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Fuzzing Approaches

• Generation-based: generate whole test 
inputs from scratch (what we've been 
doing)

• Mutation-based: generate new test inputs 
by modifying old ones

• Can do both, even simultaneously



AFL

• Very popular fully-automated fuzzer

• Mutation-based: make new tests by 
tweaking existing tests

• Tell it where the input is, and it does the 
rest



AFL - Basic Idea

-Flip bits
-Rearrange bits / bytes
-Randomly inject bits
-Look at code coverage information while this is happening to see if tests are getting into new areas - tests that hit new areas are selected more frequently 
for mutation



AFL Demo



AFL Highlights

• Fast

• Easy to use

• Needs a seed corpus (starting set of tests) 
to start mutations from

• Has major impact on performance

• Good, but tends to plateau quickly 
compared to specialized fuzzers



Symbolic Execution 
(Towards KLEE)



Symbolic Execution

• Basic idea: remember the conditions that 
led you to your current place in the code

• This is called the path condition



Example

def foo(x, y): 
  if x > 0: 
    if y > 10: 
      print("a") 
    else: 
      print("b") 
  else: 
    print("c")
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Example

def foo(x, y): 
  if x > 0: 
    if y > 10: 
      print("a") 
    else: 
      print("b") 
  else: 
    print("c")

Path Condition

x > 0 && 
y > 10

-So to print "a", x must be > 0 and y must be > 10



Example

def foo(x, y): 
  if x > 0: 
    if y > 10: 
      print("a") 
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      print("b") 
  else: 
    print("c")

Path Condition

x > 0

-if, however, we went down the false branch...



Example

def foo(x, y): 
  if x > 0: 
    if y > 10: 
      print("a") 
    else: 
      print("b") 
  else: 
    print("c")

Path Condition

x > 0 && 
!(y > 10)

-...then to print "b", it must be that x > 10 and NOT y > 10



Example

def foo(x, y): 
  if x > 0: 
    if y > 10: 
      print("a") 
    else: 
      print("b") 
  else: 
    print("c")

Path Condition

-Going back to the beginning, if the condition was false...



Example

def foo(x, y): 
  if x > 0: 
    if y > 10: 
      print("a") 
    else: 
      print("b") 
  else: 
    print("c")

Path Condition

!(x > 0)

-...then it must be the case that x is not > 0



Concolic Execution

• Combines concrete (normal) execution and 
symbolic execution

• Basic idea: use the path condition to 
discover test inputs which explore different 
program paths



Example

def foo(x, y): 
  if x > 0: 
    if y > 10: 
      print("a") 
    else: 
      print("b") 
  else: 
    print("c")

Path Condition

Tests

x = 1, y = 1

-Randomly choose inputs of x = 1 and y = 1
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Example

def foo(x, y): 
  if x > 0: 
    if y > 10: 
      print("a") 
    else: 
      print("b") 
  else: 
    print("c")

Path Condition

Tests

x > 0 && 
!(y > 10)

x = 1, y = 1

x = 0, y = 1

To go down another path,
need

x > 0 && y > 10

x = 1, y = 11



Basic Idea

• Negate parts of the path condition to 
discover different program paths

• Find inputs which satisfy these negated 
paths to generate new test inputs

• Keep running generated test inputs and 
continue this process until all paths are 
explored



Finding Inputs Satisfying 
Constraints

• This is what SMT solvers do

• Best-case NP-Complete, worst-case 
undecidable

• Usually surprisingly fast in practice

x > 0 && y > 10 x = 1, y = 11



KLEE

• Tool which performs concolic execution

• Has a custom SMT solver internally for 
doing this quickly (STP)

• Been used to find bugs in tons of systems, 
including the Linux kernel



KLEE Demo



Concolic Execution 
Downside

Explores all program paths...whether you want to or not.
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Concolic Execution 
Downside

Explores all program paths...whether you want to or not.

def bar(x): 
  while x > 10: 
    x = x - 1

Path Condition

Tests

x > 10; x = 11

x0 > 10 && 
!(x1 > 10)

-Key point: each iteration introduces a new variable into the path constraint
-There are ways around this in specific cases, but loops can trip up symbolic execution systems



Concolic Execution 
Overall

• Great for code dealing with specific conditions 
which are unlikely to hit otherwise

• Can get tripped up on loops


