
COMP 587: AFL and KLEE
Kyle Dewey

Fuzzing Approaches

• Generation-based: generate whole test
inputs from scratch (what we've been
doing)

• Mutation-based: generate new test inputs
by modifying old ones

• Can do both, even simultaneously

AFL

• Very popular fully-automated fuzzer

• Mutation-based: make new tests by
tweaking existing tests

• Tell it where the input is, and it does the
rest

AFL - Basic Idea

-Flip bits
-Rearrange bits / bytes
-Randomly inject bits
-Look at code coverage information while this is happening to see if tests are getting into new areas - tests that hit new areas are selected more frequently
for mutation

AFL Demo

AFL Highlights

• Fast

• Easy to use

• Needs a seed corpus (starting set of tests)
to start mutations from

• Has major impact on performance

• Good, but tends to plateau quickly
compared to specialized fuzzers

Symbolic Execution
(Towards KLEE)

Symbolic Execution

• Basic idea: remember the conditions that
led you to your current place in the code

• This is called the path condition

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

x > 0

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

x > 0 &&
y > 10

-So to print "a", x must be > 0 and y must be > 10

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

x > 0

-if, however, we went down the false branch...

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

x > 0 &&
!(y > 10)

-...then to print "b", it must be that x > 10 and NOT y > 10

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

-Going back to the beginning, if the condition was false...

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

!(x > 0)

-...then it must be the case that x is not > 0

Concolic Execution

• Combines concrete (normal) execution and
symbolic execution

• Basic idea: use the path condition to
discover test inputs which explore different
program paths

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x = 1, y = 1

-Randomly choose inputs of x = 1 and y = 1

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x = 1, y = 1

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x = 1, y = 1

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x = 1, y = 1

x > 0

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x > 0

x > 0 goes down this
path, so !(x > 0)

goes down another path

x = 1, y = 1

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x > 0

x > 0 goes down this
path, so !(x > 0)

goes down another path

x = 1, y = 1

x = 0, y = 1

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x > 0 &&
!(y > 10)

x = 1, y = 1

x = 0, y = 1

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x > 0 &&
!(y > 10)

x = 1, y = 1

x = 0, y = 1

To go down another path,
need

x > 0 && y > 10

Example

def foo(x, y):
 if x > 0:
 if y > 10:
 print("a")
 else:
 print("b")
 else:
 print("c")

Path Condition

Tests

x > 0 &&
!(y > 10)

x = 1, y = 1

x = 0, y = 1

To go down another path,
need

x > 0 && y > 10

x = 1, y = 11

Basic Idea

• Negate parts of the path condition to
discover different program paths

• Find inputs which satisfy these negated
paths to generate new test inputs

• Keep running generated test inputs and
continue this process until all paths are
explored

Finding Inputs Satisfying
Constraints

• This is what SMT solvers do

• Best-case NP-Complete, worst-case
undecidable

• Usually surprisingly fast in practice

x > 0 && y > 10 x = 1, y = 11

KLEE

• Tool which performs concolic execution

• Has a custom SMT solver internally for
doing this quickly (STP)

• Been used to find bugs in tons of systems,
including the Linux kernel

KLEE Demo

Concolic Execution
Downside

Explores all program paths...whether you want to or not.

Concolic Execution
Downside

Explores all program paths...whether you want to or not.

def bar(x):
 while x > 10:
 x = x - 1

Path Condition

Concolic Execution
Downside

Explores all program paths...whether you want to or not.

def bar(x):
 while x > 10:
 x = x - 1

Path Condition

!(x > 10)

Tests

x > 10; x = 11

Concolic Execution
Downside

Explores all program paths...whether you want to or not.

def bar(x):
 while x > 10:
 x = x - 1

Path Condition

Tests

x > 10; x = 11

Concolic Execution
Downside

Explores all program paths...whether you want to or not.

def bar(x):
 while x > 10:
 x = x - 1

Path Condition

Tests

x > 10; x = 11

x0 > 10

Concolic Execution
Downside

Explores all program paths...whether you want to or not.

def bar(x):
 while x > 10:
 x = x - 1

Path Condition

Tests

x > 10; x = 11

x0 > 10

Concolic Execution
Downside

Explores all program paths...whether you want to or not.

def bar(x):
 while x > 10:
 x = x - 1

Path Condition

Tests

x > 10; x = 11

x0 > 10 &&
!(x1 > 10)

-Key point: each iteration introduces a new variable into the path constraint
-There are ways around this in specific cases, but loops can trip up symbolic execution systems

Concolic Execution
Overall

• Great for code dealing with specific conditions
which are unlikely to hit otherwise

• Can get tripped up on loops

