
COMP 587: Software Verification and Validation
Spring 2020

Instructor: Kyle Dewey (kyle.dewey@csun.edu)
Course Web Page: https://kyledewey.github.io/comp587-spring20
Office: JD 4419, Extension 4316 (not yet connected)

Course Description (From the Catalog)
An-in depth study of verification and validation strategies and techniques as they apply
to the development of quality software. Topics include test planning and management,
testing tools, technical reviews, formal methods and the economics of software testing.
The relationship of testing to other quality assurance activities as well as the integration
of verification and validation into the overall software development process are also
discussed.

Learning Objectives
Successful students will be able to:
• Formulate an actionable test plan with ACC (Attributes, Components, Capabilities)
• Apply their test plan to testing existing software with industry-standard techniques
• Understand and apply advanced testing techniques to existing software
• Use model checking techniques to build confidence in the correctness of software

specifications
• Use verification techniques to prove small programs correct

Course Motivation (or a Relevant Rant)
As a society, we have chosen to surround ourselves with software, and to make
software essential to daily life. Software controls everything from a car’s fuel injector to
critical infrastructure. Software makes it easy to build new things cheaply, and to rapidly
adapt to change.

However, as a society, we have counterintuitively decided that it’s generally ok for
software to fail, especially if failures are rare. It’s ok when unanticipated inputs cause
an app to crash. It’s ok if memory leaks require me to power cycle a router. It’s ok if a
race condition causes the traffic lights at an intersection to go to flashing reds. It’s ok if
a flaw in my encryption scheme allows others to read my email. It’s ok if an unchecked
array access leaks my social security number. It’s ok if a missing bounds check
destroys my life’s work. It’s ok if a lack of input sanitization wastes hundreds of millions
of dollars. It’s ok if an unexpected scenario kills people.

This sounds ridiculous, and it is ridiculous, but this is reality. Each of the above
examples is rooted in real software flaws with real impacts. None of these examples
have resulted in widespread outcry for better software. If you think any of the above are
decidedly not ok, and you want to do something about it, this class is for you.

mailto:kyle.dewey@csun.edu
https://kyledewey.github.io/comp587-spring20

Textbook
No textbooks are required. That said, the following books may be of interest to you:
• How Google Tests Software, James Whittaker, Jason Arbon, Jeff Carollo - discusses

ACC and a number of basic industrial testing approaches
• Fuzzing: Brute Force Vulnerability Discovery, Michael Sutton, Adam Greene, Pedram

Amini - discusses some of the advanced approaches; fairly out of date, but many of
the concepts are the same

• Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers, Leslie Lamport - introduction to formalizing and reasoning about software
specifications with the TLA+ model checker, by the creator of TLA+

• Software Abstractions: Logic, Language, and Analysis, Daniel Jackson - similar to the
book before, but for the Alloy model checker by the creator of Alloy

• Certified Programming with Dependent Types, Adam Chlipala - an in-depth look at
dependent type theory and Coq, suitable for proving software implementations
correct

Graded Components
Your grade is based on the following components:

Not all assignments will be weighted evenly, nor will you always be given the same
amount of time for assignments. Exactly which assignments are assigned depends on
how the class progresses. In general, assignments will be submitted through Canvas
(https://canvas.csun.edu/). In the event that there is a problem with Canvas, you may
email your assignment to me (kyle.dewey@csun.edu), though this should be considered
a last resort.

Class content is reinforced by assignments (40% of your grade), which broadly
cover V&V. The class project (40% of your grade) further requires you to take some of
the lessons you've learned from the assignments and apply them to some preexisting

Assignments 40%

Project - Proposal and
Formulating Test Plan with
ACC

4%

Project - Unit Testing with
Sufficient Coverage

12%

Project - Automated
Testing

15%

Project - Pull Requests 5%

Project - Final Report 4%

Midterm Exam 10%

Final Exam 10%

https://canvas.csun.edu
mailto:kyle.dewey@csun.edu

piece of software. The assignments are intended to give you a (hopefully) gentle
introduction to a variety of techniques, whereas the project lets you apply some of these
techniques in a more realistic setting. Details of the project follow, roughly in
chronological order:
1. System under test (SUT) selection. You will choose a software project which you

want to apply V&V techniques to, hereafter referred to as a SUT. The SUT should
be sufficiently large (at least 1,000 lines of code for each person on the project),
and can be in any state of development. Your grade is based solely on the V&V
aspect, so if you select an incomplete SUT (e.g., it is still in the planning stages),
the actual SUT implementation is secondary. You are encouraged to select
software you have written in the past, but you must be ok with giving everyone in
the class access to this code. You may work individually if you so choose.

2. Proposal and formulating a test plan with ACC (4%). This describes what exactly
you'll do in the project.

3. Unit testing with sufficient coverage (12%). You'll apply unit testing to your project
to attempt to find bugs and improve confidence. To ensure your unit testing is
sufficiently, you'll measure its effectiveness using code coverage measurement
techniques.

4. Automated testing (15%). You'll apply automated testing techniques to some part
of your project. For our purposes, "automated testing" means "automatically
generating test inputs and automatically running them".

5. Project pull requests (5% total). You are required to submit 5 pull requests, each
worth 1% apiece, roughly one every two weeks you work on the project. Each pull
request consists of a separate contribution to the project. These are intended to
get you familiar with filing pull requests, and to ensure that steady progress is
made on the project. You cannot submit them all at once.

6. Project report (4%). You will write background information on the project, how you
tested it, and what you've learned in the process.

The exams are intentionally not worth too much. Most of what we learn in the class is
necessarily heavy on programming with an emphasis on interaction with the SUT; most
of this is not feasible to do in an exam environment without a computer. As such, the
exams focus on higher-level, more conceptual issues.

Final Grades
Plus/minus grading is used, according to the scale below:

If your score is >=... ...you will receive...

92.5 A

89.5 A-

86.5 B+

82.5 B

Plagiarism and Academic Honesty
While collaboration is allowed on assignments, you are responsible for all of your own
work. You may not take code from online sources and submit it as your own. If you do
find code online which you wish to include in a solution, you must cite it. Any violations
can result in a failing grade for the assignment, or potentially failing the course for
egregious cases. A report will also be made to the Dean of Academic Affairs. Students
who repeatedly violate this policy across multiple courses may be suspended or even
expelled.

Attendance
I will take attendance for the first two class sessions. If you miss both sessions and
have not made alternative arrangements with me, you must drop the class, as per
University policy (http://catalog.csun.edu/policies/attendance-class-attendance/). This
policy is in place to help motivated waitlisted students enroll in the class. After the first
week I will not take attendance, though you are strongly encouraged to attend.

Communication
• Canvas' messaging is encouraged for anything that is potentially relevant to the

whole class
• Email is preferred for anything specifically for me

Late Policy / Exam Scheduling
Late assignments will be accepted without penalty if prior arrangements have been
made or there is some sort of legitimate emergency (at my discretion). If you must be
absent from an exam, contact me ASAP to see if alternative accommodations can be
made.

If an assignment is otherwise submitted late, it will be penalized according to the
following scale:

79.5 B-

76.5 C+

72.5 C

69.5 C-

66.5 D+

62.5 D

59.5 D-

0 F

If your score is >=... ...you will receive...

http://catalog.csun.edu/policies/attendance-class-attendance/

To be clear, assignments which are submitted four or more days beyond the deadline
will not receive credit. The reason for such a harsh late policy is that we will generally
discuss solutions in class shortly after the deadline, and this late policy discourages
people from simply pulling a solution from an in-class discussion.

Class Feedback
I am open to any questions / comments / concerns / complaints you have about the
class. If there is something relevant you want covered, I can push to make this happen.
I operate off of your feedback, and no feedback tells me “everything is ok”.

---Class Schedule and List of Topics on Next Page---

If your assignment is late
by <= this many days...

...it will be deducted by...

1 10%

2 30%

3 60%

4+ 100%

Class Schedule and List of Topics (Subject to Change)
Week Monday Wednesday

1 1/20: MLK, Jr. Day (No class) 1/22: Introduction, motivation, project
information

2 1/27: Project information, ACC-
based test planning

1/29: ACC + project, git and GitHub

3 2/3: Linters, unit testing, testability 2/5: Unit testing, testability

4 2/10: Unit testing, testability,
mocking

2/12: Continuous integration

5 2/17: Measuring testing
effectiveness: test coverage

2/19: Measuring testing effectiveness:
mutation analysis

6 2/24: Mutation analysis,
automated testing introduction
(basic concepts + loops)

2/26: Grammar-based automated
testing

7 3/2: Grammar-based automated
testing

3/4: Grammar-based automated testing

8 3/9: Grammar-based automated
testing

3/11: Property-based testing:
introduction + relationship

9 3/16: Spring Recess (no class) 3/18: Spring Recess (no class)

10 3/23: Lab (work on projects) 3/25: Midterm Exam

11 3/30: Property-based testing 4/1: Property-based testing

12 4/6: Concolic execution 4/8: Verification introduction, Dafny

13 4/13: Verification with Dafny 4/15: Verification with Dafny

14 4/20: Verification with Dafny 4/22: Model checking introduction, Alloy

15 4/27: Verification with Alloy 4/29: Verification with Alloy

16 5/4: Verification with Alloy 5/6: Final review

