
CS16, UCSB
Pre-lab #2: Worth 50% of Lab 2 score (50 total points)

Print this form, staple loose pages together, and write
your answers on it.

Accepted: On paper, in lab Wednesday, July 11 or in lecture
Thursday, July 12.

Name (2 pts): _____________________________

Email (2 pts): ____________________________

Lab section (2 pts) Circle one: 2:00 3:30

If you have the book, read to the end of Chapter 2 in the
Etter text. Otherwise consult the lecture slides. Then
answer the following questions.

1.Consider the following code (from Etter 410):

int a = 27, b = 6;
float c;
...
c = a / (float)b;

a.(6 pts) What is the meaning and what is the effect of
the `(float)b` part of the last statement above?

b.(2 pts) What would be the resulting value of c without
the `(float)` part (i.e., just c = a / b)?

c.(6 pts) Would the `(float)` part be necessary if the
variables were declared as follows? Explain your answer.

int b = 6;
float a = 27, c;

d.(2 pts) The term used above - “`(float)` part” - is
obviously very non-technical, but there is a specific
term to property call this type of operator. What is the
proper term?

2.If you have the textbook, read the section titled
“Overflow and Underflow” on page 49. If not, you may have
to use the Internet as a resource.

a.(6 pts) The book states that the actions generated by
overflow and underflow are ultimately “system dependent”.
What does “system dependent” mean here? (Hint: it is
related to “undefined” behavior.)

b.(6 pts) What can you do to find out how your system
responds to an overflow condition?

c.(6 pts) Describe a way you can test how your system
responds to an underflow condition.

3.If you have the text, refer to “Character I/O” on page
70. A summary of that section follows.

In addition to printf and scanf, C has two other functions
for writing and reading from the terminal, namely putchar()
and getchar(). putchar() writes a single character to the
terminal, like so:

putchar(‘a’); // prints ‘a’ to the terminal

getchar(), in contrast, reads a single character from the
terminal, returning it. The return type is int, so it can
return a special non-character value (namely EOF, or End Of
File) if it could not read a character in. It is used like
so:

int c = getchar(); // character read in is in variable “c”
putchar(c); // prints out the same character read in

a.(4 pts) Write one proper C statement using scanf
instead of getchar that will have exactly the same effect
(on the variable “c”) as the following statement:

int c = getchar();

b.(4 pts) Write one proper C statement using printf
instead of putchar that will produce exactly the same
output as the following two statements (referencing the
same variable “c” from before):

putchar(c);
putchar(‘\n’);

c.(2 pts) Imagine that the user entered 0 (zero) in part
a above, and suppose your printf statement in part b used
“%i” instead of “%c” to print this value. What would be
the output in this case? (Hint: not 0 - see ASCII codes.)

Pre-lab End. Adapted from Michael Costanzo by Kyle Dewey.

