
CS16, UCSB
Pre-lab #4: Worth 50% of Lab 4 score (50 total points)

Print this form, staple loose pages together, and write
your answers on it.

Accepted: On paper, in lab Wednesday, July 25.

Name (2 pts): _____________________________

Email (2 pts): ____________________________

Lab section (2 pts) Circle one: 2:00 3:30

If you have the book, read the rest of Chapter 3,
especially sections 3.4 (Loop Structures) and 3.6 (Data
Files). You may skim through sections 3.7 and 3.8, but do
learn about summation notation (p. 129) and carefully
examine the program developed on pp. 133-136. Then answer
the following items.

1.(24 pts; 8 pts each) Solve the following problem three
different ways, by first applying a while loop, then a
do/while loop, and finally a for loop. The problem is to
find the sum of all integers from m through n. For
example, if m is 4 and n is 7, this sum is 4+5+6+7 = 22.
You may assume that m will always be less than or equal
to n. There is no need to print anything. Just find the
sum. Imagine the following statements have already been
executed before your solutions start:

int m, n; /* start and end values */
int i; /* a variable you can use to develop your
 * solutions */
int sum = 0; /* store the result in this variable;
 * already initialized */

printf("enter m, n: ");
scanf("%i %i", &m, &n); /* assume that m <= n */

a. Write your while loop solution here.

b. Write your do/while loop solution here.

c. Write your for loop solution here.

2.(5 pts) You just found the sum of all integers from `m`
through `n` three ways. Such a sum can be neatly
described by "summation notation" - describe it that way.
A potential useful reference is here: http://
en.wikipedia.org/wiki/Summation#Capital-sigma_notation

3.(15 pts) As a reminder, strings in C are represented in
memory as a series of characters (represented by the
single byte `char` type), terminated by a special null
byte (‘\0’). Consider the following code that creates a
string “foobar” and makes it accessible through the
variable `string`:

char* string = “foobar”;

http://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
http://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
http://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
http://en.wikipedia.org/wiki/Summation#Capital-sigma_notation

In C, individual characters of a string can be accessed
using a special square brackets notation. For example,
using the same variable `string` from above:

string[0] // returns the first character of the string
 // this returns ‘f’ for the string “foobar”
string[1] // returns the second character (‘o’)
...
string[6] // returns the null byte (‘\0’) that
 // terminates the string

Let `s` be a variable of type `char*` that allows access
to some arbitrary string. This variable `s` works in the
exact same manner as the variable `string` above, except
now the string’s contents are unknown. (It could be
“foo”, “bar”, “foobar”, “house”, “plane”, etc.)

Consider the following code:

char* s = ...; // don’t know what ... is
int length = 0;

Write code below that will ultimately set the variable
`length` to the number of characters long the string is,
not counting the terminating null byte. For example, for
the string “foo”, `length` should equal 3 by the end of
the code, and for the string “foobar” `length` should
equal 6 by the end of the code. (Hint: A loop is needed
for part of the solution, and a `while` loop is probably
the most natural choice.)

Pre-lab End. Adapted from Michael Costanzo by Kyle Dewey.

