
Week 8
Kyle Dewey

Thursday, August 16, 12

Overview

• Exam #2

• Multidimensional arrays

• Command line arguments

•void*

• Dynamic memory allocation

• Project #3 will be released tonight

Thursday, August 16, 12

Exam #2

• Difficulty

• Too hard? Too easy? Just right?

• Content

• On topic? Irrelevant?

• Review

• Helpful? Not helpful?

Thursday, August 16, 12

Multidimensional Arrays

Thursday, August 16, 12

Motivation

• Cartesian coordinate system

Thursday, August 16, 12

Coordinates

• Points can be addressed by X and Y (and
possibly Z for a three dimensional grid)

• If only one point, could have x, y, and z
variables for that point

• There can be an arbitrary number of points

Thursday, August 16, 12

What is Wanted
// `grid` is a two dimensional grid
// of integers. `0` means there isn’t
// a point there, and anything else
// indicates a point

grid[2][3] = 1; // put a point
grid[1][4] = 0; // remove a point

// if there is a point here
if (grid[0][2]) { ... }

Thursday, August 16, 12

What this Is

• Looks like array access...

• C lets us make arrays of arrays

• A mechanism for representing grids

grid[2][3] = 1; // put a point
grid[1][4] = 0; // remove a point

// if there is a point here
if (grid[0][2]) { ... }

Thursday, August 16, 12

Multidimensional Arrays

• Can be declared like so:

int grid[5][5];
int grid2[2][3];
int grid3[3][2];

• Initial values are undefined

Thursday, August 16, 12

Multidimensional Arrays

• Can be initialized like so:

int grid[2][3] =
 { { 1, 2, 3 },
 { 4, 5, 6 } };

int grid2[3][2] =
 { { 7, 8 },
 { 9, 10 },
 { 11, 12 } };

Thursday, August 16, 12

Initialization

• Same rules as typical arrays

• ...however, can omit only the outermost
size

// valid
int grid[][3] =
 { { 1, 2, 3 },
 { 4, 5, 6 } };

Thursday, August 16, 12

Initialization

• Same rules as typical arrays

• ...however, can omit only the outermost
size

// invalid - omitted inner
// size
int grid[][] =
 { { 1, 2, 3 },
 { 4, 5, 6 } };

Thursday, August 16, 12

Initialization

• Same rules as typical arrays

• ...however, can omit only the outermost
size

// invalid - omitted inner
// size
int grid[2][] =
 { { 1, 2, 3 },
 { 4, 5, 6 } };

Thursday, August 16, 12

Usage

• Use [] just as with normal arrays

• Except now there is another level

int grid[][3] =
 { { 1, 2, 3 },
 { 4, 5, 6 } };
grid[0][0]; // gets 1
grid[1][1] = 10; // 5 is replaced
 // with 10

Thursday, August 16, 12

Recall Representation

• Type of a one-dimensional array of
integers: int[]

• Decays nicely to an int*

int arr[] = { 1, 2, 3 };
int* arr2 = arr;

Thursday, August 16, 12

Recall...
int arr[] = { 1, 2, 3, 4 };

1

2

3

4

Value
Memory
Location

0

4

8

12

arr

(holds memory
location 0)

points to

Thursday, August 16, 12

Representation

• Do not decay nicely

• gcc: fails to compile

• ch: crashes if you try to use arr2

int arr[2][3];
int** arr2 = arr;

Thursday, August 16, 12

Why?
• Internal representation is flat

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

Logically Actually

Thursday, August 16, 12

Significance
• There are no actual pointers to pointers

here (as int** would imply)

• This could be either of the two:

0 1 2 3 4 5 6 7 8

int arr[] = {0,1,2,3,4,5,6,7,8};
int arr2[][3] = {{0,1,2},
 {3,4,5},
 {6,7,8}};

Thursday, August 16, 12

Arrays and Functions
• Need to specify all but the innermost

dimension

• These dimensions must be specified as
constants

int arr2[][3] = {{0,1,2},
 {3,4,5},
 {6,7,8}};
void blah(int arr[][3]);
...
int main() {
 blah(arr2);
}

Thursday, August 16, 12

Aside: Trick to Treat it
Like a Pointer

• Recall the internal representation:

int arr[][3] = {{0,1,2},
 {3,4,5},
 {6,7,8}};

0 1 2 3 4 5 6 7 8

arr[ROW][COL] ==
((int*)arr)[ROW*COLS + COL]

Thursday, August 16, 12

Another
Representation

• Multidimensional arrays can be represented
as arrays of pointers to arrays

• This means we have true pointers to
pointers

Thursday, August 16, 12

Example

int firstRow[] = { 0, 1, 2 };
int secondRow[] = { 3, 4, 5 };
int thirdRow[] = { 6, 7, 8 };
int* temp[] = { firstRow,
 secondRow,
 thirdRow };
int** full = temp;

Thursday, August 16, 12

Possible Representation
char first[] = { ‘a’, ‘b’ };
char second[] = { ‘c’, ‘d’ };
char* grid[] = { first, second };

2 4 ‘a’ ‘b’ ‘c’ ‘d’Value

Addr 0 1 2 3 4 5

grid

Thursday, August 16, 12

Possible Representation

4 2 ‘c’ ‘d’ ‘a’ ‘b’Value

Addr 0 1 2 3 4 5

grid

char first[] = { ‘a’, ‘b’ };
char second[] = { ‘c’, ‘d’ };
char* grid[] = { first, second };

Thursday, August 16, 12

Possible Representation

‘a’ ‘b’ ‘c’ ‘d’ 0 2Value

Addr 0 1 2 3 4 5

grid

char first[] = { ‘a’, ‘b’ };
char second[] = { ‘c’, ‘d’ };
char* grid[] = { first, second };

Thursday, August 16, 12

The Point

• Each individual array must be contiguous

• Why?

• Arrays themselves can be all over in
memory

Thursday, August 16, 12

Example

• Print out a two-dimensional cartesian plane

• Represent points with periods, and
everything else with spaces

•cartesian.c

Thursday, August 16, 12

Command Line
Arguments

Thursday, August 16, 12

Command Line
Arguments

• Recall how UNIX commands work

ls
emacs code.c
gcc -o code code.c

command command line
arguments

Thursday, August 16, 12

Command Line
Arguments

• There is nothing special about ls, emacs,
and gcc

• These are simply programs

• Any program (including your own) can take
command line arguments

Thursday, August 16, 12

main()

• We usually define main like so:

int main() {
 ...
}

• However, it can also be defined like so:

int main(int argc, char** argv) {
 ...
}

Thursday, August 16, 12

main()

• When defined like this, it is set up to read
command line arguments

• argc: The number of arguments passed

• argv: The arguments themselves

• Note that argv[0] is always the name
of the program

int main(int argc, char** argv) {
 ...
}

Thursday, August 16, 12

command_line.c

Thursday, August 16, 12

Interpreting Arguments

• Each argument is just a string

• You’ll need to interpret this however your
program needs

• i.e. use atoi() to convert a string to an
integer, etc.

Thursday, August 16, 12

void*

Thursday, August 16, 12

void*

• Like any other pointer, it refers to some
memory address

• However, it has no associated type, and
cannot be dereferenced directly

• Question: why can’t it be dereferenced?

Thursday, August 16, 12

No Dereferencing
void* p = 2;
*p; // get what’s at p

0x21 0x00 0x01 0x52 0xF0 0xAB 0x2CValue

Address 0 1 2 3 4 5 6

• void* is a value without context

• Without context, there is no way to know how to
interpret the value (int? char? double?)

Thursday, August 16, 12

How to Use a void*

• A void* cannot be dereferenced directly

• However, it is possible to cast a void* to
another type

char* str = “moo”;
void* p = str;
printf(“%s\n”, (char*)p);

Thursday, August 16, 12

How to Use a void*

• A void* also coerces into other pointer
types

char* str = “moo”;
void* p = str;
char* str2 = p; // no errors

Thursday, August 16, 12

Caveat
• A void* also coerces into other pointer

types

• The compiler will trust you blindly

char* str = “moo”;
void* p = str;

// no compiler errors, but
// this is probably not what
// is desired
int* nums = p;

Thursday, August 16, 12

Why a void*?

• Makes data structures generic (you’ll have
to trust me on this...)

• Can refer to some block of memory
without context

• Up next: why anyone would want to do
that

Thursday, August 16, 12

Dynamic Memory
Allocation

Thursday, August 16, 12

Motivation

• We want to read in a dictionary of words

• Before reading it in:

• We don’t know how many words there
are

• We don’t know how big each word is

apple
banana
pear

<<empty>> aardvark

Thursday, August 16, 12

Possible Solution

• Allocate the maximum amount you could
ever need

• Question: why is this generally not a good
solution? (2 reasons)

// 1000 words max with
// 100 characters max per word
char dictionary[1000][100];

Thursday, August 16, 12

Problems

• Most things do not have a good “maximum”
you can get a grasp of

• Your program always needs the maximum
amount of memory, and usually the vast
majority is completely wasted

Thursday, August 16, 12

What is Desired

• A way to tell the computer to give a
certain amount of memory to a program as
it runs

• Only what is explicitly requested is
allocated

Thursday, August 16, 12

Dynamic Memory
Allocation

• Dynamic: as the program runs

• Memory allocation: set aside memory

Thursday, August 16, 12

 malloc

• The most generic way to allocate memory

• Takes the number of bytes to allocate

• Returns a void* to the block of memory
allocated

// size_t is an integral defined
// elsewhere
void* malloc(size_t numBytes);

Thursday, August 16, 12

Using malloc
• The sizeof operator comes in handy

• Returns an integral size as a size_t

• For example: allocate room for 50 integers
dynamically:

// dynamically
int* nums1;
nums1 = malloc(sizeof(int) * 50);

int nums2[50]; // statically

Thursday, August 16, 12

Importance
• Static allocation can only be done with

constants

• Dynamic allocation can be done with
variables

int numToAllocate;
scanf(“%i”, &numToAllocate);
int* nums =
 malloc(sizeof(int) * numToAllocate);
int nums2[numToAllocate]; // ERROR

Thursday, August 16, 12

Memory Contents

• The contents of the memory allocated by
malloc is undefined

• You will need to initialize it yourself with a
loop (or by using memset)

Thursday, August 16, 12

malloc1.c,
malloc2.c

Thursday, August 16, 12

calloc

• Very similar to malloc

• Takes the number of elements to allocate
and the size of each element

• Will do the multiplication itself

• Will also initialize the allocated portion to
zero at the binary representation

void* calloc(size_t num, size_t size);

Thursday, August 16, 12

calloc

• Very similar to malloc

• Will also initialize the allocated portion to
zero at the binary representation

int* nums1, nums2;
nums1 = malloc(sizeof(int) * 50);
nums2 = calloc(50, sizeof(int));

Thursday, August 16, 12

realloc

• For resizing a block of memory that has
already been allocated (with one of
malloc, calloc, or realloc)

• Except if given NULL - then it behaves
like malloc

• Takes the previously allocated memory
block, and the new size

void* realloc(void* ptr, size_t size);

Thursday, August 16, 12

realloc
• For resizing a block of memory that has

already been allocated (with one of
malloc, calloc, or realloc)

• Except if given NULL - then it behaves
like malloc

int* nums;
nums = malloc(sizeof(int) * 50);
...
// we want 5 more integers
nums = realloc(nums,
 sizeof(int) * 55);

Thursday, August 16, 12

realloc

• For resizing a block of memory that has
already been allocated (with one of
malloc, calloc, or realloc)

int* nums;
nums = malloc(sizeof(int) * 50);
...
// we want 5 more integers
nums = realloc(nums,
 sizeof(int) * 55);

Thursday, August 16, 12

free
• Once we are done using a block of

memory, call free on it

• If a block is never freed, it is called a
memory leak

• Memory is still allocated but wasted

int* nums;
nums = malloc(sizeof(int) * 50);
...
// done with nums
free(nums);

Thursday, August 16, 12

Project #3

Thursday, August 16, 12

Basic Idea

• We have a dictionary of words

• We are given an unordered series of letters

• i.e. the ordering does not matter

• Using these letters, which words in the
dictionary can be made?

Thursday, August 16, 12

Basic Idea

Dictionary:
moo
cow
bull
steer

Letters:
mlublorts

Thursday, August 16, 12

Basic Idea

Dictionary:
moo
cow
bull
steer

Letters:
mlublorts

Words:
bull

Thursday, August 16, 12

For Full Credit (4% of
Final Grade)

• Dictionary is provided and is hardcoded

• Prompt user for some letters

• Print out which words in the given
dictionary can be made

• Keep doing this until the user uses “exit”
for the letters

Thursday, August 16, 12

Bonuses

• Six bonuses

• Can add 6% to your final grade

• Must be done in sequence if they are to be
done

• I.e. you cannot get credit for bonus #3
without doing bonus #2

• Don’t need to do them all (or any)

Thursday, August 16, 12

Bonus #1 (2%)

• Read in the dictionary from a file named
“dictionary.txt”

• Safe to assume the max number of words
and the max word length are set constants

• Format:

moo
cow
bull
steer

Thursday, August 16, 12

Bonus #2 (0.5%)

• The maximum word length is not constant

Thursday, August 16, 12

Bonus #3 (0.5%)

• The maximum number of words in the
dictionary is not constant

Thursday, August 16, 12

Bonus #4 (0.5%)

• Instead of prompting the user for input
letters, read in the input from a file named
“input.txt”

• Format:

bjkbkj
fbjb
wyuil

Thursday, August 16, 12

Bonus #5 (0.5%)

• Write the results to a file named
“output.txt”

• Output format:

floom:
moo

hwravwt:
hat
vat

m:
Thursday, August 16, 12

Bonus #6 (2%)

• Read in the input file, dictionary file, and
output file from the command line

• Command line format:

./prog -d dict.txt -i in.txt -o out.txt

Thursday, August 16, 12

Bonus #6 (continued)

• The -d, -i, and -o parts can be in any
order, or omitted

• If no -d is provided, default to
“dictionary.txt”

• If no -i is provided, instead prompt the
user for letters interactively

• If no -o is provided, instead print out the
results to the user

Thursday, August 16, 12

