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Overview

• Grades posted for assignment 1

• Secure information flow key 
implementation issues

• Reactive imperative programming
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Assignment I Lingering 
Questions
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Secure Information 
Flow Assignment
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Missing File

• As written, there is a missing file: 
util.scala 

• Option 1: Download zip file from the 
course website (under “Interpreter 
Code”), copy util.scala, and add it to 
the makefile

• Option 2: Remove all mentions of the 
pretty printer (from util.scala)
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Adding a Field for the 
Label
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pc Stack

• Define an object named pc

• It internally has a mutable stack

• There are many ways to do this, but 
scala.collection.mutable.Stack 
is probably the easiest
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test27.not

Friday, February 1, 13



Any questions on 
secure information 

flow?
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Reactive Imperative 
Programming

Friday, February 1, 13



Motivation

• An interesting language feature

• Another possible feature to add if designing 
a language, along with objects and higher-
order functions
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Citation

• Camil Demetrescu et al.: Reactive 
imperative programming with dataflow 
constraints - OOPSLA'11

• Not an easy read, and it shouldn’t be 
necessary

• A few key details are ambiguous or missing
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Reactive

• More familiar technology: spreadsheets

• The value of a cell can depend on the value 
in other cells

• If the value of a cell changes, all dependent 
cells are updated

• As in, all cells that somehow use the 
changed cell’s value
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Imperative

• Can work with the imperative paradigm

• Roughly, with variable/field assignment

• When a variable/field changes, everything 
marked as dependent is updated

• Spreadsheets are a case of reactive 
functional programming
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Marking as Dependent

• “When variable x changes, execute this 
given code”

• Explicitly associate x with code

• Why isn’t this a great idea?
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Marking as Dependent

• Better alternative: “Here is some code that 
is reactive”

• Let the language figure out which 
variables/fields are involved

• Let the language worry about updating 
the right things

• The code is called a constraint
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What would this look 
like?
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newCons Operator
• Defines both code and what reacts to said 

code

var a in
  a := 0;
  newCons {
    output a // `a` is reactive
  };
  while (a < 10) {
    a := a + 1 // trigger `output`
  }

Output:
0
1
...
10
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More Interesting 
Example

sanitize.not
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Implementation

• From a high level, how might we implement 
this in the interpreter?

var a in
  a := 0;
  newCons {
    output a // `a` is reactive
  };
  while (a < 10) {
    a := a + 1 // trigger `output`
  }

Output:
0
1
...
10
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Basic Semantics

• Execute code in what newCons delimits

• Mark addresses used inside what newCons 
delimits as reactive

• When these are changed outside of the 
same newCons, trigger the delimited code 
(a.k.a, the constraint)
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Questions

• Is this enough detail to implement 
newCons?

• Is this enough detail to use newCons?
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Cyclical Constraints

var a in
  a := 0;
  newCons {
    a := a + 1;
    output a
  };
  a := 3

Output:
1
4
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Multiple Constraints

var a in
  a := 3;
  newCons {
    output a
  };
  newCons {
    a := a + 1
  };
  a := 5

Output:
3
4
6
6
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Nested Constraints
var a, b in
  a := 4;
  b := "";
  newCons {
    output a;
    newCons {
      output b
    };
    b := b + "b"
  };
  a := 5;
  b := "t"

Output:
4

<<newline>>
b
5
b
bb
5
t
tb
tb
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newCons with Objects

var obj in 
  obj := {“foo”: 1, “bar”: 2};
  newCons {
    output obj.foo
  };
  obj.foo := 10;
  obj.bar := 20

• What does this output?

Output:
1
10
10
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These Slides Don’t 
Cover...

• The atomic block

• Different execution modes

• Specifically how to implement in miniJS
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