
CS162 Week 3
Kyle Dewey

Friday, February 1, 13

Overview

• Grades posted for assignment 1

• Secure information flow key
implementation issues

• Reactive imperative programming

Friday, February 1, 13

Assignment I Lingering
Questions

Friday, February 1, 13

Secure Information
Flow Assignment

Friday, February 1, 13

Missing File

• As written, there is a missing file:
util.scala

• Option 1: Download zip file from the
course website (under “Interpreter
Code”), copy util.scala, and add it to
the makefile

• Option 2: Remove all mentions of the
pretty printer (from util.scala)

Friday, February 1, 13

Adding a Field for the
Label

Friday, February 1, 13

pc Stack

• Define an object named pc

• It internally has a mutable stack

• There are many ways to do this, but
scala.collection.mutable.Stack
is probably the easiest

Friday, February 1, 13

test27.not

Friday, February 1, 13

Any questions on
secure information

flow?

Friday, February 1, 13

Reactive Imperative
Programming

Friday, February 1, 13

Motivation

• An interesting language feature

• Another possible feature to add if designing
a language, along with objects and higher-
order functions

Friday, February 1, 13

Citation

• Camil Demetrescu et al.: Reactive
imperative programming with dataflow
constraints - OOPSLA'11

• Not an easy read, and it shouldn’t be
necessary

• A few key details are ambiguous or missing

Friday, February 1, 13

Reactive

• More familiar technology: spreadsheets

• The value of a cell can depend on the value
in other cells

• If the value of a cell changes, all dependent
cells are updated

• As in, all cells that somehow use the
changed cell’s value

Friday, February 1, 13

Imperative

• Can work with the imperative paradigm

• Roughly, with variable/field assignment

• When a variable/field changes, everything
marked as dependent is updated

• Spreadsheets are a case of reactive
functional programming

Friday, February 1, 13

Marking as Dependent

• “When variable x changes, execute this
given code”

• Explicitly associate x with code

• Why isn’t this a great idea?

Friday, February 1, 13

Marking as Dependent

• Better alternative: “Here is some code that
is reactive”

• Let the language figure out which
variables/fields are involved

• Let the language worry about updating
the right things

• The code is called a constraint

Friday, February 1, 13

What would this look
like?

Friday, February 1, 13

newCons Operator
• Defines both code and what reacts to said

code

var a in
 a := 0;
 newCons {
 output a // `a` is reactive
 };
 while (a < 10) {
 a := a + 1 // trigger `output`
 }

Output:
0
1
...
10

Friday, February 1, 13

More Interesting
Example

sanitize.not

Friday, February 1, 13

Implementation

• From a high level, how might we implement
this in the interpreter?

var a in
 a := 0;
 newCons {
 output a // `a` is reactive
 };
 while (a < 10) {
 a := a + 1 // trigger `output`
 }

Output:
0
1
...
10

Friday, February 1, 13

Basic Semantics

• Execute code in what newCons delimits

• Mark addresses used inside what newCons
delimits as reactive

• When these are changed outside of the
same newCons, trigger the delimited code
(a.k.a, the constraint)

Friday, February 1, 13

Questions

• Is this enough detail to implement
newCons?

• Is this enough detail to use newCons?

Friday, February 1, 13

Cyclical Constraints

var a in
 a := 0;
 newCons {
 a := a + 1;
 output a
 };
 a := 3

Output:
1
4

Friday, February 1, 13

Multiple Constraints

var a in
 a := 3;
 newCons {
 output a
 };
 newCons {
 a := a + 1
 };
 a := 5

Output:
3
4
6
6

Friday, February 1, 13

Nested Constraints
var a, b in
 a := 4;
 b := "";
 newCons {
 output a;
 newCons {
 output b
 };
 b := b + "b"
 };
 a := 5;
 b := "t"

Output:
4

<<newline>>
b
5
b
bb
5
t
tb
tb

Friday, February 1, 13

newCons with Objects

var obj in
 obj := {“foo”: 1, “bar”: 2};
 newCons {
 output obj.foo
 };
 obj.foo := 10;
 obj.bar := 20

• What does this output?

Output:
1
10
10

Friday, February 1, 13

These Slides Don’t
Cover...

• The atomic block

• Different execution modes

• Specifically how to implement in miniJS

Friday, February 1, 13

