
CS162 Week 4
Kyle Dewey

Sunday, February 3, 13

Overview

• Reactive imperative programming refresher

• Rest of newCons

• What atomic is

• Implementation details

Sunday, February 3, 13

Reactive Imperative
Programming Refresher

Sunday, February 3, 13

Basic Semantics

• Execute code in what newCons delimits

• Mark addresses used inside what newCons
delimits as reactive

• When these are changed outside of the
same newCons, trigger the delimited code
(a.k.a, the constraint)

Sunday, February 3, 13

newCons

var a in
 a := 0;
 newCons {
 output a // `a` is reactive
 };
 while (a < 10) {
 a := a + 1 // trigger `output`
 }

Output:
0
1
...
10

Sunday, February 3, 13

Questions

• Is this enough detail to implement
newCons?

• Is this enough detail to use newCons?

Sunday, February 3, 13

Multiple Constraints #1
var a in
 a := 0;
 newCons {
 output a
 };
 newCons {
 output a + 1
 };
 a := 10

Output:
0
1
11
10

Sunday, February 3, 13

Cyclical Constraints

var a in
 a := 0;
 newCons {
 a := a + 1;
 output a
 };
 a := 3

Output:
1
4

Sunday, February 3, 13

Multiple Constraints #2

var a in
 a := 3;
 newCons {
 output a
 };
 newCons {
 a := a + 1
 };
 a := 5

Output:
3
4
6
6

Sunday, February 3, 13

Nested Constraints
var a, b in
 a := 4;
 b := "";
 newCons {
 output a;
 newCons {
 output b
 };
 b := b + "b"
 };
 a := 5;
 b := "t"

Output:
4

<<newline>>
b
5
b
bb
5
t
tb
tb

Sunday, February 3, 13

newCons with Objects

var obj in
 obj := {“foo”: 1, “bar”: 2};
 newCons {
 output obj.foo
 };
 obj.foo := 10;
 obj.bar := 20

• What does this output?

Output:
1
10
10

Sunday, February 3, 13

The Point

• There are a lot of different edge cases

• As the language designer, these should all
be accounted for

Sunday, February 3, 13

atomic Blocks

Sunday, February 3, 13

Problem

• We need to update a variable multiple
times during a loop

• The computation is not “done” until the
last assignment

• We want to update only when the
computation is done

Sunday, February 3, 13

Example

var a in
 a := 0;
 newCons {
 output a
 };
 while (a < 11) {
 a := a + 3
 };
 a := a + a // now `a` is ready

Output:
0
3
6
9
12
24

Sunday, February 3, 13

Hacky Solution

• Add a flag isDone

• Set to false beforehand

• Set to true when a constraint is ready

• In the constraint, only process if isDone
is true

Sunday, February 3, 13

Better Solution

• Let the language handle it

• Introduce a special atomic block

• Constraints are only updated once we
leave the atomic block

• Instead of having multiple updates of the
same constraint, only update the
constraint once at the end

Sunday, February 3, 13

With atomic
var a in
 a := 0;
 newCons {
 output a
 };
 atomic {
 while (a < 11) {
 a := a + 3
 };
 a := a + a // now `a` is ready
 }

Output:
0
24

Sunday, February 3, 13

Nesting atomic
var a, b in
 newCons {
 output b
 };
 newCons {
 output a
 };
 atomic {
 a := 2;
 atomic {
 b := 4
 };
 a := 3
 }

Output:
undef
undef

3
4

Sunday, February 3, 13

Implementation Details

Sunday, February 3, 13

Evaluation Modes

• The interpreter can be in one of three
modes:

• Normal mode (normal execution)

• Constraint mode

• Atomic Mode

• See domains.scala

Sunday, February 3, 13

Constraint Mode
• Whenever the body of a newCons block is

executed

• First entrance of newCons

• When a reactive address is updated in
normal mode or constraint mode

• When we exit all atomic blocks

• Stores which constraint is currently being
executed (useful for preventing recursive
constraints)

Sunday, February 3, 13

Atomic Mode

• Whenever we execute the body of an
atomic block

• No constraints are triggered in this mode

• Store reactive addresses that were
updated to trigger them once we leave
atomic mode

Sunday, February 3, 13

Data Structures

•Dependencies

• Maps reactive addresses to sets of
constraints

• See domains.scala

• constraintStack

• atomicStack

Sunday, February 3, 13

constraintStack

• For nested new constraints

• Records which constraint is currently
active

Sunday, February 3, 13

atomicStack

• For nested atomic blocks

• Records which reactive addresses need
constraint updates upon leaving the last
atomic block

Sunday, February 3, 13

Tips
• Never execute a constraint when you are

in atomic mode

• Self-recursive constraints should never
trigger themselves

• Reactive addresses can be both added and
removed via newCons, depending on
what gets used in the newCons’ body

• If a previously reactive address is not
used when executing a constraint
newCons, the address is no longer
reactive

Sunday, February 3, 13

