
CS162 Week 5
Kyle Dewey

Friday, February 8, 13

Overview

• Announcements

• Reactive Imperative Programming

• Parallelism

• Software transactional memory

Friday, February 8, 13

TA Evaluations

Friday, February 8, 13

unicode_to_ascii.sh

Friday, February 8, 13

Reactive Imperative
Programming
Clarification

Friday, February 8, 13

Tips
• Never execute a constraint when you are

in atomic mode

• Self-recursive constraints should never
trigger themselves

• Reactive addresses can be both added and
removed via newCons, depending on
what gets used in the newCons’ body

• If a previously reactive address is not
used when executing a constraint
newCons, the address is no longer
reactive

Friday, February 8, 13

deletedAddress.not

Friday, February 8, 13

Any lingering Reactive
Imperative

Programming
Questions?

Friday, February 8, 13

Parallelism

Friday, February 8, 13

Previous Experience

• Anyone taken CS170? CS240A?

• Any pthreads users?

• Threads in any language?

• MPI users?

• Cloud? (AWS / Azure / AppEngine...)

• Comfort with parallel code?

Friday, February 8, 13

Going back a bit...

• A processor executes instructions

• The faster it can execute instructions, the
faster our program runs

• Ideal world: one processor that runs really,
really fast

Friday, February 8, 13

Moore’s Law

• The number of transistors per some unit of
volume in integrated circuits doubles
roughly every two years

• This number is roughly correlated to how
fast it runs

Friday, February 8, 13

In the Beginning: The
Land was At Peace
• Processors get faster and faster

• Using clock speed as a poor estimator of
actual speed:

• Pentium: Up to 300 Mhz

• Pentium II: Up to 450 Mhz

• Pentium III: Up to 1.4 Ghz

• Pentium 4: Up to 3.8 Ghz

Friday, February 8, 13

Then Physics Happened

Friday, February 8, 13

Heat

• More transistors means more power is
needed

• More power means more heat is generated
for the same amount of space

• Too much heat and the processor stops
working

Friday, February 8, 13

So Just Cool It
• Again, physics is evil

• Normal heatsinks and fans can only push
away heat so quickly

• To get heat away fast enough, you need to
start getting drastic

• Water cooling

• Peltier (thermoelectric) coolers

• Liquid nitrogen drip

Friday, February 8, 13

Even if it Could be
Cooled...

• When transistors get too close together,
quantum physics kicks in

• Electrons will more or less teleport
between wires, preventing the processor
from working correctly

• Not cool physics. Not cool.

Friday, February 8, 13

But the Computer
Architects had a Plan...

Friday, February 8, 13

...one that would allow
processors to keep

getting faster...

Friday, February 8, 13

“Eh, I give up. Let the
software people handle it.”

Friday, February 8, 13

Multicore is Born

• Put multiple execution units on the same
processor

• Uses transistors more efficiently

• Individual cores are slower, but the
summation of cores is faster

• I.e. 2 cores at 2.4 Ghz is “faster” than a
single processor at 3.8 Ghz

Friday, February 8, 13

Problem

• The software itself needs to be written to
use multiple cores

• If it is not written this way, then it will only
use a single core

• Nearly all existing software was (and still is)
written only to use a single core

• Oops.

Friday, February 8, 13

Why it is hard

• People generally do not think in parallel

• Want to spend more time getting less
done poorly? Just multitask.

• Many problems have subproblems that
must be done sequentially

• Known as sequential dependencies

• Often require some sort of
communication

Friday, February 8, 13

In the Code

• With multiple cores, you can execute
multiple threads in parallel

• Each thread executes its own bit of code

• Typical single-core programs only have a
single thread of execution

• One explicitly requests threads and
specifies what they should run

Friday, February 8, 13

Example

void thread1() {
 if (x == -1) {
 x = 5;
 }
}

int x = -1;

void thread2() {
 if (x == -1) {
 x = 6;
 }
}

Friday, February 8, 13

Race Conditions

• This example still may get executed
correctly

• Depends on what gets run when

• This is called a race condition

• One computation “races” another one,
and depending on who “wins” you get
different results

• IMO: the most difficult bugs to find and to
fix

Friday, February 8, 13

Fundamental Problem

• Need to manage shared, mutable state

• Only certain states and certain state
transitions are valid

• In the example, it is valid to go from -1 to
5, or from -1 to 6, but not from 5 to 6 or
from 6 to 5

• Need a way of enforcing that we will not
derive invalid states or execute invalid state
transitions

Friday, February 8, 13

A Solution: Locks

• Shared state is under a lock

• If you want to modify it, you need to hold a
key

• Only one process can hold a key at a time

Friday, February 8, 13

Example With Locks

void proc1() {
 lock (x) {
 if (x == -1) {
 x = 5;
 }
 }
}

int x = -1;

void proc2() {
 lock (x) {
 if (x == -1) {
 x = 6;
 }
 }
}

Friday, February 8, 13

Problems With Locks

• Very low-level and error prone

• Can absolutely kill performance

• Because of locks, the example before is
now purely sequential, with locking
overhead

Friday, February 8, 13

Deadlock

void proc1() {
 lock(x) {
 lock(y) {
 ...
 }
 }
}

int x = 1;
int y = 2;

void proc2() {
 lock(y) {
 lock(x) {
 ...
 }
 }
}

Friday, February 8, 13

Other Solutions

• There are a LOT:

• Atomic operations

• Semaphores

• Monitors

• Software transactional memory

Friday, February 8, 13

Software Transactional
Memory

• Very different approach from locks

• Code that needs to be run in a single unit
is put into an atomic block

• Everything in an atomic block is executed
in a single transaction

Friday, February 8, 13

Transactions

• Execute the code in the atomic block

• If it did not conflict with anything, then
commit it

• If there was a conflict, then roll back and
retry

• All or nothing

Friday, February 8, 13

Example With STM

void proc1() {
 atomic {
 if (x == -1) {
 x = 5;
 }
 }
}

int x = -1;

void proc2() {
 atomic {
 if (x == -1) {
 x = 6;
 }
 }
}

Friday, February 8, 13

Not a Lock

• We do not explicitly state what we are
locking on

• We only roll back if there was a change

• With locks, we could lock something and
never change it

• Atomic blocks automatically determine
what needs to be “locked”

Friday, February 8, 13

Performance

• Scale much better than locks

• Oftentimes conflicts are possible but
infrequent, and performance hits are
mostly at conflicts

• Depending on the implementation,
atomic blocks can have a much lower
overhead than locking

Friday, February 8, 13

