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Overview

• Announcements

• Reactive Imperative Programming

• Parallelism

• Software transactional memory
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TA Evaluations
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unicode_to_ascii.sh
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Reactive Imperative 
Programming 
Clarification
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Tips
• Never execute a constraint when you are 

in atomic mode

• Self-recursive constraints should never 
trigger themselves

• Reactive addresses can be both added and 
removed via newCons, depending on 
what gets used in the newCons’ body

• If a previously reactive address is not 
used when executing a constraint 
newCons, the address is no longer 
reactive
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deletedAddress.not
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Any lingering Reactive 
Imperative 

Programming 
Questions?
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Parallelism
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Previous Experience

• Anyone taken CS170? CS240A?

• Any pthreads users?

• Threads in any language?

• MPI users?

• Cloud? (AWS / Azure / AppEngine...)

• Comfort with parallel code?
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Going back a bit...

• A processor executes instructions

• The faster it can execute instructions, the 
faster our program runs

• Ideal world: one processor that runs really, 
really fast
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Moore’s Law

• The number of transistors per some unit of 
volume in integrated circuits doubles 
roughly every two years

• This number is roughly correlated to how 
fast it runs
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In the Beginning: The 
Land was At Peace
• Processors get faster and faster

• Using clock speed as a poor estimator of 
actual speed:

• Pentium: Up to 300 Mhz

• Pentium II: Up to 450 Mhz

• Pentium III: Up to 1.4 Ghz

• Pentium 4: Up to 3.8 Ghz
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Then Physics Happened
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Heat

• More transistors means more power is 
needed

• More power means more heat is generated 
for the same amount of space

• Too much heat and the processor stops 
working
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So Just Cool It
• Again, physics is evil

• Normal heatsinks and fans can only push 
away heat so quickly

• To get heat away fast enough, you need to 
start getting drastic

• Water cooling

• Peltier (thermoelectric) coolers

• Liquid nitrogen drip

Friday, February 8, 13



Even if it Could be 
Cooled...

• When transistors get too close together, 
quantum physics kicks in

• Electrons will more or less teleport 
between wires, preventing the processor 
from working correctly

• Not cool physics.  Not cool.
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But the Computer 
Architects had a Plan...
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...one that would allow 
processors to keep 

getting faster...
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“Eh, I give up.  Let the 
software people handle it.”
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Multicore is Born

• Put multiple execution units on the same 
processor

• Uses transistors more efficiently

• Individual cores are slower, but the 
summation of cores is faster

• I.e. 2 cores at 2.4 Ghz is “faster” than a 
single processor at 3.8 Ghz

Friday, February 8, 13



Problem

• The software itself needs to be written to 
use multiple cores

• If it is not written this way, then it will only 
use a single core

• Nearly all existing software was (and still is) 
written only to use a single core

• Oops.
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Why it is hard

• People generally do not think in parallel

• Want to spend more time getting less 
done poorly? Just multitask.

• Many problems have subproblems that 
must be done sequentially

• Known as sequential dependencies

• Often require some sort of 
communication
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In the Code

• With multiple cores, you can execute 
multiple threads in parallel

• Each thread executes its own bit of code

• Typical single-core programs only have a 
single thread of execution

• One explicitly requests threads and 
specifies what they should run
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Example

void thread1() {
  if (x == -1) {
    x = 5;
  }
}

int x = -1;

void thread2() {
  if (x == -1) {
    x = 6;
  }
}
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Race Conditions

• This example still may get executed 
correctly

• Depends on what gets run when

• This is called a race condition

• One computation “races” another one, 
and depending on who “wins” you get 
different results

• IMO: the most difficult bugs to find and to 
fix
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Fundamental Problem

• Need to manage shared, mutable state

• Only certain states and certain state 
transitions are valid

• In the example, it is valid to go from -1 to 
5, or from -1 to 6, but not from 5 to 6 or 
from 6 to 5

• Need a way of enforcing that we will not 
derive invalid states or execute invalid state 
transitions
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A Solution: Locks

• Shared state is under a lock

• If you want to modify it, you need to hold a 
key

• Only one process can hold a key at a time
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Example With Locks

void proc1() {
  lock (x) {
    if (x == -1) {
      x = 5;
    }
  }
}

int x = -1;

void proc2() {
  lock (x) {
    if (x == -1) {
      x = 6;
    }
  }
}
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Problems With Locks

• Very low-level and error prone

• Can absolutely kill performance

• Because of locks, the example before is 
now purely sequential, with locking 
overhead
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Deadlock

void proc1() {
  lock(x) {
    lock(y) {
      ...
    }
  }
}

int x = 1;
int y = 2;

void proc2() {
  lock(y) {
    lock(x) {
      ...
    }
  }
}
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Other Solutions

• There are a LOT:

• Atomic operations

• Semaphores

• Monitors

• Software transactional memory
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Software Transactional 
Memory

• Very different approach from locks

• Code that needs to be run in a single unit 
is put into an atomic block

• Everything in an atomic block is executed 
in a single transaction
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Transactions

• Execute the code in the atomic block

• If it did not conflict with anything, then 
commit it

• If there was a conflict, then roll back and 
retry

• All or nothing
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Example With STM

void proc1() {
  atomic {
    if (x == -1) {
      x = 5;
    }
  }
}

int x = -1;

void proc2() {
  atomic {
    if (x == -1) {
      x = 6;
    }
  }
}
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Not a Lock

• We do not explicitly state what we are 
locking on

• We only roll back if there was a change

• With locks, we could lock something and 
never change it

• Atomic blocks automatically determine 
what needs to be “locked”
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Performance

• Scale much better than locks

• Oftentimes conflicts are possible but 
infrequent, and performance hits are 
mostly at conflicts

• Depending on the implementation, 
atomic blocks can have a much lower 
overhead than locking
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