CS162 Week 6

Kyle Dewey

uuuuuuuuuuuuuuuuuuuu

Overview

® Note on mutability
® STM:semantics and implementation

® Will cover as much as possible

Sunday, February 24, 13

Mutability

® You may use mutable stacks
(scala.collection.mutable.Stack) and mutable
buffers (scala.collection.mutable.Buffer) for
this assighnment

® You do not actually need them, but they
may come in handy

Sunday, February 24, 13

Software Transactional
Memory

uuuuuuuuuuuuuuuuuuuu

Threads

testThreadO.not

var thread in

thread := (param) =>{
output param };

tStart (thread, 42)

testThreadO.not

var thread in

Output:

thread := (param) =>{ 42
output param };

tStart (thread, 42)

Sunday, February 24, 13

testThreadl .not

var a, b, ¢ 1n

b := 0;

a := (param) => {
output b

b s

c := (param) => {

b :1= b + 1;
output "inside b"
bs
tStart(a, {});
tStart(c, {});
tStart(a, {});
tStart(c, {})

uuuuuuuuuuuuuuuuuuuu

testThreadl .not

var a, b, ¢ 1n

b = 0;

a := (param) => { Output:
output b 222

b (Depends on thread

c := (param) => { scheduling)

b :1= b + 1;

output "inside b"
b s
tStart (a,)
tStart (g,)
tStart(a, {});
tStart (c,)

testThreadZ.not

var a, b, ¢ 1n

b := 0;

a := (param) =>
{output Db};

c := (param) =>

{b := b + 1;
tStart(a, {})}7

var d 1in
d := 0;
while (d < 20) {
tStart(c, {}):;
d := d + 1

uuuuuuuuuuuuuuuuuuuu

testThreadZ.not

var a, b, ¢ 1n

b := 0;

a := (param) =>
{output b}; Output:

c := (param) => {4
(b := b + 1; (Depends on thread
tStart(a, {})}; scheduling)

var d 1in
d := 0;
while (d < 20) {
tStart(c, {}):;

d := d + 1

Sunday, February 24, 13

Thread Implementation

® Uses Java’s existing Thread class

® Different ways to do it

® Can override Thread’s run () method

® (Can define a subclass of Runnable,
which is passed to Thread’s constructor

Sunday, February 24, 13

atomic

Sunday, February 24, 13

testAtomicl.not

var d 1n

d := 0;
atomic{
while (d < 40) {
d :=d + 1

}
};

output "Final output 1s";
output d

Sunday, February 24, 13

testAtomicl.not

var d 1n

d := 0;
Output:
atomic { 40
while (d < 40) {
d := d + 1

}
};

output "Final output 1s";
output d

Sunday, February 24, 13

testAtomicZ.not

var d 1n

d := {foo:0};
atomic{
while (d.foo < 40) {
d.foo := d.foo + 1

}
by

output "Final output 1s";
output d.foo

Sunday, February 24, 13

testAtomicZ.not

var d 1n

d := {foo:0};
atomic{ Output:
while (d.foo < 40) { 40
d.foo := d.foo + 1

}
by

output "Final output 1s";
output d.foo

Sunday, February 24, 13

testAtomic3.not

var d, a 1n
d := {foo:0};

atomic{
a := {foo:d.foo}

by

output "Final output 1s";
output a.foo

Sunday, February 24, 13

testAtomic3.not

var d, a 1n
d := {foo:0};
Output:
atomic{ 0
a := {foo:d.foo}

by

output "Final output 1s";
output a.foo

Sunday, February 24, 13

Threads with atomic

uuuuuuuuuuuuuuuuuuuu

prod—-consumer.not

testCombinel .not

testCombine’ .not

Implementation Details

® “Come up with a Log data structure that

registers all the reads and writes that are
done inside an atomic block. This data
structure should also act as a local store
for the atomic section.”

® How to make this happen!?

® Interpreter.scala

® VWhat needs to be put into the Log
initially?

Sunday, February 24, 13

Making this Happen

® Could modify everything in the interpreter
to use a store

® This store-passing style is used in formal
semantics

® Could check to see if we were given a L.og
or not

® |f so,use it. If not, use the global store.

® Many options

Sunday, February 24, 13

Initial Log Contents

® Could use the whole store

® Why is this not a great idea?

uuuuuuuuuuuuuuuuuuuu

Initial Log Contents

® Could use whole store

® | ots of extra memory used; semantically
this copies the entire heap

® Combining is difficult, since we only care
about things that were manipulated in a
transaction

® Other ideas!

Sunday, February 24, 13

Initial Log Contents

® |azily allocate into the Log
® If the address is in the Log, use it

® |f not, look at the global store

® For new things allocated, put them into
the Log

® What is wrong with this setup?

Sunday, February 24, 13

SSUC

var a, threadl, threadZ 1in

a := 0;
threadl := (param) => {
atomic {a := 1}
by
thread?2 := (param) => {
atomic{
1f (a == 0) {
a := a + 1

s
tStart (threadl, 0);

tStart (threadZ2, 0);
// assume both threads finish here
output a

Sunday, February 24, 13

SSUC

var a, threadl, threadZ 1in

a := 0;
threadl := (param) => {
atomic {a := 1} Output:

s Either 1 or 2 if
thread?2 := (param) => { Wwe always defer
atomic to the global
1f (a == 0) { store.

a := a + 1
s How can this be
tStart (threadl, 0); fixed?

tStart (threadZ2, 0);
// assume both threads finish here
output a

Sunday, February 24, 13

Initial Log Contents

® |azily allocate into the Log
® |f the address is in the Log, use it

® |f not, look at the global store

® For new things allocated, put them into
the Log

Sunday, February 24, 13

Commits

® “Modify the global store data structure to
handle commits.”

® VWhat does this mean?

Sunday, February 24, 13

Commits

® “Modify the global store data structure to
handle commits.”

® Apply changes from the Log into the
global store

Sunday, February 24, 13

Modifying Address

® “You may have to modify the Address
value to ensure proper commits.”

¢ Why!

uuuuuuuuuuuuuuuuuuuu

Modifying Address

// the actual store, an Address 1s an index 1into this buffer

: Bl er{Storable] BUffer()
apply(a:Address): Storable =
(a.loc < store. length) store(a.loc)
undefined
update(a:Address, v:Storable): =

(a.loc < store. length) {
store(a.loc) =
UndefV()

undefined

Sunday, February 24, 13

Modifying Address

var a, b, threadl, thread? 1n

threadl := (param) => {
atomic
a := {foo: 1}
}
bs
thread?2 := (param) => {
atomic {
b := {bar: 2}

}
bs
tStart (threadl, 0);
tStart (thread?2, 0)

Sunday, February 24, 13

Modifying Address

var a, b, threadl, thread? 1n
threadl := (param) => {
atomic {

) Same address,
b different objects

thread?2 := (param) => {
atomic {
}
b s
tStart (threadl, 0);
tStart (thread?2, 0)

Sunday, February 24, 13

Synchronization

® “Make sure that the commit process is
atomic (i.e no race condition) using thread
synchronization techniques.”

® What if we try to commit two Logs to
the same store at the same time!

® What if the Logs conflict with each

other! (i.e. different values for the same
address)

Sunday, February 24, 13

Synchronization

® Easy way: use the synchronized
construct

® |nternally uses locks, but this is only a
performance thing anyway

var a = 5
synchronized {
a = a + 1

J

Sunday, February 24, 13

Nested atomic

testAtomicAtomicl

var a, b 1n
b := 5;

atomic {

a := b;

atomic {
b := 3;
a := Db

}
by

output a;
output b

testAtomicAtomicl

var a, b 1n

b := 5;
Output:
atomic 3
a := b; 3
atomic {
b := 3;
a := D

}
by

output a;
output b

Sunday, February 24,

Nested atomic
Implementation

® “When you exit an inner atomic section,
commit the changes to the log of the
enclosing atomic section.”

® Now Logs need to be handle commits in
addition to the global store

® Need to somehow record what to
commit to (The global store! A Log!? If

a Log, which Log?)

Sunday, February 24, 13

tStart Within atomic

testThreadAtomic/
.NOT

testAtomicThreadl

var a, b, threadl 1in

a := 0;
threadl := (param) => {
while (a < 5000) {
a := a + 1
}
}s
atomic {

tStart (threadl, 0)

b i
output a

Sunday, February 24, 13

testAtomicThreadl

var a, b, threadl 1in

a := 0;
threadl := (param) => { Output:
a := a + 1
}
}s
atomic {

tStart (threadl, 0)

b i
output a

testAtomicThread”
_1.n0t

testAtomicThread”
_1.not

® Output depends on thread schedule
® Final output is always 5000

® Other two values range anywhere from 0
to 5000

Implementing tStart
within atomic

® “Make sure that all the threads within an
atomic section complete their execution
before performing a commit.”

® Completed means a thread is dead

® T[hreads will die on their own when they
complete their execution (assuming your
tStart implementation works

correctly)

Sunday, February 24, 13

