
CS162 Week 6
Kyle Dewey

Sunday, February 24, 13

Overview

• Note on mutability

• STM: semantics and implementation

• Will cover as much as possible

Sunday, February 24, 13

Mutability

• You may use mutable stacks
(scala.collection.mutable.Stack) and mutable
buffers (scala.collection.mutable.Buffer) for
this assignment

• You do not actually need them, but they
may come in handy

Sunday, February 24, 13

Software Transactional
Memory

Sunday, February 24, 13

Threads

Sunday, February 24, 13

testThread0.not

var thread in

 thread := (param) =>{
 output param };

 tStart(thread, 42)

Sunday, February 24, 13

testThread0.not

var thread in

 thread := (param) =>{
 output param };

 tStart(thread, 42)

Output:
42

Sunday, February 24, 13

testThread1.not
var a, b, c in
 b := 0;
 a := (param) => {
 output b
 };
 c := (param) => {
 b := b + 1;
 output "inside b"
 };
 tStart(a, {});
 tStart(c, {});
 tStart(a, {});
 tStart(c, {})

Sunday, February 24, 13

testThread1.not
var a, b, c in
 b := 0;
 a := (param) => {
 output b
 };
 c := (param) => {
 b := b + 1;
 output "inside b"
 };
 tStart(a, {});
 tStart(c, {});
 tStart(a, {});
 tStart(c, {})

Output:
???

(Depends on thread
scheduling)

Sunday, February 24, 13

testThread2.not
var a, b, c in
 b := 0;
 a := (param) =>
 {output b};
 c := (param) =>
 {b := b + 1;
 tStart(a, {})};

 var d in
 d := 0;
 while (d < 20) {
 tStart(c, {});
 d := d + 1
 }

Sunday, February 24, 13

testThread2.not
var a, b, c in
 b := 0;
 a := (param) =>
 {output b};
 c := (param) =>
 {b := b + 1;
 tStart(a, {})};

 var d in
 d := 0;
 while (d < 20) {
 tStart(c, {});
 d := d + 1
 }

Output:
???

(Depends on thread
scheduling)

Sunday, February 24, 13

Thread Implementation

• Uses Java’s existing Thread class

• Different ways to do it

• Can override Thread’s run() method

• Can define a subclass of Runnable,
which is passed to Thread’s constructor

Sunday, February 24, 13

atomic

Sunday, February 24, 13

testAtomic1.not
var d in
 d := 0;

 atomic{
 while (d < 40) {
 d := d + 1
 }
 };

 output "Final output is";
 output d

Sunday, February 24, 13

testAtomic1.not
var d in
 d := 0;

 atomic{
 while (d < 40) {
 d := d + 1
 }
 };

 output "Final output is";
 output d

Output:
40

Sunday, February 24, 13

testAtomic2.not
var d in
 d := {foo:0};

 atomic{
 while (d.foo < 40) {
 d.foo := d.foo + 1
 }
 };

 output "Final output is";
 output d.foo

Sunday, February 24, 13

testAtomic2.not
var d in
 d := {foo:0};

 atomic{
 while (d.foo < 40) {
 d.foo := d.foo + 1
 }
 };

 output "Final output is";
 output d.foo

Output:
40

Sunday, February 24, 13

testAtomic3.not

var d, a in
 d := {foo:0};

 atomic{
 a := {foo:d.foo}
 };

 output "Final output is";
 output a.foo

Sunday, February 24, 13

testAtomic3.not

var d, a in
 d := {foo:0};

 atomic{
 a := {foo:d.foo}
 };

 output "Final output is";
 output a.foo

Output:
0

Sunday, February 24, 13

Threads with atomic

Sunday, February 24, 13

prod-consumer.not

Sunday, February 24, 13

testCombine1.not

Sunday, February 24, 13

testCombine2.not

Sunday, February 24, 13

Implementation Details

• “Come up with a Log data structure that
registers all the reads and writes that are
done inside an atomic block. This data
structure should also act as a local store
for the atomic section.”

• How to make this happen?

•interpreter.scala

• What needs to be put into the Log
initially?

Sunday, February 24, 13

Making this Happen

• Could modify everything in the interpreter
to use a store

• This store-passing style is used in formal
semantics

• Could check to see if we were given a Log
or not

• If so, use it. If not, use the global store.

• Many options

Sunday, February 24, 13

Initial Log Contents

• Could use the whole store

• Why is this not a great idea?

Sunday, February 24, 13

Initial Log Contents

• Could use whole store

• Lots of extra memory used; semantically
this copies the entire heap

• Combining is difficult, since we only care
about things that were manipulated in a
transaction

• Other ideas?

Sunday, February 24, 13

Initial Log Contents

• Lazily allocate into the Log

• If the address is in the Log, use it

• If not, look at the global store

• For new things allocated, put them into
the Log

• What is wrong with this setup?

Sunday, February 24, 13

Issue
var a, thread1, thread2 in
 a := 0;
 thread1 := (param) => {
 atomic {a := 1}
 };
 thread2 := (param) => {
 atomic{
 if (a == 0) {
 a := a + 1
 }}};
 tStart(thread1, 0);
 tStart(thread2, 0);
 // assume both threads finish here
 output a

Sunday, February 24, 13

Issue
var a, thread1, thread2 in
 a := 0;
 thread1 := (param) => {
 atomic {a := 1}
 };
 thread2 := (param) => {
 atomic{
 if (a == 0) {
 a := a + 1
 }}};
 tStart(thread1, 0);
 tStart(thread2, 0);
 // assume both threads finish here
 output a

Output:
Either 1 or 2 if
we always defer

to the global
store.

How can this be
fixed?

Sunday, February 24, 13

Initial Log Contents

• Lazily allocate into the Log

• If the address is in the Log, use it

• If not, look at the global store, and put
the address / value mapping from the
global store into the Log

• For new things allocated, put them into
the Log

Sunday, February 24, 13

Commits

• “Modify the global store data structure to
handle commits.”

• What does this mean?

Sunday, February 24, 13

Commits

• “Modify the global store data structure to
handle commits.”

• Apply changes from the Log into the
global store

Sunday, February 24, 13

Modifying Address

• “You may have to modify the Address
value to ensure proper commits.”

• Why?

Sunday, February 24, 13

Modifying Address

Sunday, February 24, 13

Modifying Address
var a, b, thread1, thread2 in
 thread1 := (param) => {
 atomic {
 a := {foo: 1}
 }
 };
 thread2 := (param) => {
 atomic {
 b := {bar: 2}
 }
 };
 tStart(thread1, 0);
 tStart(thread2, 0)

Sunday, February 24, 13

Modifying Address
var a, b, thread1, thread2 in
 thread1 := (param) => {
 atomic {
 a := {foo: 1}
 }
 };
 thread2 := (param) => {
 atomic {
 b := {bar: 2}
 }
 };
 tStart(thread1, 0);
 tStart(thread2, 0)

Same address,
different objects

Sunday, February 24, 13

Synchronization

• “Make sure that the commit process is
atomic (i.e no race condition) using thread
synchronization techniques.”

• What if we try to commit two Logs to
the same store at the same time?

• What if the Logs conflict with each
other? (i.e. different values for the same
address)

Sunday, February 24, 13

Synchronization

• Easy way: use the synchronized
construct

• Internally uses locks, but this is only a
performance thing anyway

var a = 5
synchronized {
 a = a + 1
}

Sunday, February 24, 13

Nested atomic

Sunday, February 24, 13

testAtomicAtomic1
var a, b in
 b := 5;

 atomic {
 a := b;
 atomic {
 b := 3;
 a := b
 }
 };

 output a;
 output b

Sunday, February 24, 13

testAtomicAtomic1
var a, b in
 b := 5;

 atomic {
 a := b;
 atomic {
 b := 3;
 a := b
 }
 };

 output a;
 output b

Output:
3
3

Sunday, February 24, 13

Nested atomic
Implementation

• “When you exit an inner atomic section,
commit the changes to the log of the
enclosing atomic section.”

• Now Logs need to be handle commits in
addition to the global store

• Need to somehow record what to
commit to (The global store? A Log? If
a Log, which Log?)

Sunday, February 24, 13

tStart Within atomic

Sunday, February 24, 13

testThreadAtomic2
.not

Sunday, February 24, 13

testAtomicThread1

var a, b, thread1 in
 a := 0;
 thread1 := (param) => {
 while (a < 5000) {
 a := a + 1
 }
 };
 atomic {
 tStart(thread1, 0)
 };
 output a

Sunday, February 24, 13

testAtomicThread1

var a, b, thread1 in
 a := 0;
 thread1 := (param) => {
 while (a < 5000) {
 a := a + 1
 }
 };
 atomic {
 tStart(thread1, 0)
 };
 output a

Output:
5000

Sunday, February 24, 13

testAtomicThread2
_1.not

Sunday, February 24, 13

testAtomicThread2
_1.not

• Output depends on thread schedule

• Final output is always 5000

• Other two values range anywhere from 0
to 5000

Sunday, February 24, 13

Implementing tStart
within atomic

• “Make sure that all the threads within an
atomic section complete their execution
before performing a commit.”

• Completed means a thread is dead

• Threads will die on their own when they
complete their execution (assuming your
tStart implementation works
correctly)

Sunday, February 24, 13

