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Overview

• Note on mutability

• STM: semantics and implementation

• Will cover as much as possible
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Mutability

• You may use mutable stacks 
(scala.collection.mutable.Stack) and mutable 
buffers (scala.collection.mutable.Buffer) for 
this assignment

• You do not actually need them, but they 
may come in handy
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Software Transactional 
Memory
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Threads
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testThread0.not

var thread in

  thread := (param) =>{
    output param };

  tStart(thread, 42)
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testThread0.not

var thread in

  thread := (param) =>{
    output param };

  tStart(thread, 42)

Output:
42
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testThread1.not
var a, b, c in
  b := 0;
  a := (param) => {
    output b
  };
  c := (param) => {
    b := b + 1;
    output "inside b"
  };
  tStart(a, {});
  tStart(c, {});
  tStart(a, {});
  tStart(c, {})
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testThread1.not
var a, b, c in
  b := 0;
  a := (param) => {
    output b
  };
  c := (param) => {
    b := b + 1;
    output "inside b"
  };
  tStart(a, {});
  tStart(c, {});
  tStart(a, {});
  tStart(c, {})

Output:
???

(Depends on thread
scheduling)
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testThread2.not
var a, b, c in
  b := 0;
  a := (param) =>
   {output b};
  c := (param) => 
   {b := b + 1; 
    tStart(a, {})};

  var d in
    d := 0;
    while (d < 20) {
    tStart(c, {});
    d := d + 1
  }
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testThread2.not
var a, b, c in
  b := 0;
  a := (param) =>
   {output b};
  c := (param) => 
   {b := b + 1; 
    tStart(a, {})};

  var d in
    d := 0;
    while (d < 20) {
    tStart(c, {});
    d := d + 1
  }

Output:
???

(Depends on thread
scheduling)
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Thread Implementation

• Uses Java’s existing Thread class

• Different ways to do it

• Can override Thread’s run() method

• Can define a subclass of Runnable, 
which is passed to Thread’s constructor
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atomic
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testAtomic1.not
var d in
  d := 0;

  atomic{
    while (d < 40) {
      d := d + 1
    }
  };

  output "Final output is";
  output d
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testAtomic1.not
var d in
  d := 0;

  atomic{
    while (d < 40) {
      d := d + 1
    }
  };

  output "Final output is";
  output d

Output:
40
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testAtomic2.not
var d in
  d := {foo:0};

  atomic{
    while (d.foo < 40) {
      d.foo := d.foo + 1
    }
  };

  output "Final output is";
  output d.foo
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testAtomic2.not
var d in
  d := {foo:0};

  atomic{
    while (d.foo < 40) {
      d.foo := d.foo + 1
    }
  };

  output "Final output is";
  output d.foo

Output:
40
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testAtomic3.not

var d, a in
  d := {foo:0};

  atomic{
    a := {foo:d.foo}
  };

  output "Final output is";
  output a.foo
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testAtomic3.not

var d, a in
  d := {foo:0};

  atomic{
    a := {foo:d.foo}
  };

  output "Final output is";
  output a.foo

Output:
0
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Threads with atomic
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prod-consumer.not
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testCombine1.not
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testCombine2.not
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Implementation Details

• “Come up with a Log data structure that 
registers all the reads and writes that are 
done inside an atomic block. This data 
structure should also act as a local store 
for the atomic section.”

• How to make this happen?

•interpreter.scala

• What needs to be put into the Log 
initially?
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Making this Happen

• Could modify everything in the interpreter 
to use a store

• This store-passing style is used in formal 
semantics

• Could check to see if we were given a Log 
or not

• If so, use it.  If not, use the global store.

• Many options
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Initial Log Contents

• Could use the whole store

• Why is this not a great idea?
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Initial Log Contents

• Could use whole store

• Lots of extra memory used; semantically 
this copies the entire heap

• Combining is difficult, since we only care 
about things that were manipulated in a 
transaction

• Other ideas?
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Initial Log Contents

• Lazily allocate into the Log

• If the address is in the Log, use it

• If not, look at the global store

• For new things allocated, put them into 
the Log

• What is wrong with this setup?
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Issue
var a, thread1, thread2 in
  a := 0;
  thread1 := (param) => {
    atomic {a := 1}
  };
  thread2 := (param) => {
    atomic{
     if (a == 0) {
      a := a + 1
     }}};
  tStart(thread1, 0);
  tStart(thread2, 0);
  // assume both threads finish here
  output a
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Issue
var a, thread1, thread2 in
  a := 0;
  thread1 := (param) => {
    atomic {a := 1}
  };
  thread2 := (param) => {
    atomic{
     if (a == 0) {
      a := a + 1
     }}};
  tStart(thread1, 0);
  tStart(thread2, 0);
  // assume both threads finish here
  output a

Output:
Either 1 or 2 if
we always defer

to the global
store. 

How can this be 
fixed?
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Initial Log Contents

• Lazily allocate into the Log

• If the address is in the Log, use it

• If not, look at the global store, and put 
the address / value mapping from the 
global store into the Log

• For new things allocated, put them into 
the Log
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Commits

• “Modify the global store data structure to 
handle commits.”

• What does this mean?
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Commits

• “Modify the global store data structure to 
handle commits.”

• Apply changes from the Log into the 
global store

Sunday, February 24, 13



Modifying Address

• “You may have to modify the Address 
value to ensure proper commits.”

• Why?
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Modifying Address
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Modifying Address
var a, b, thread1, thread2 in
  thread1 := (param) => {
    atomic {
      a := {foo: 1}
    }
  };
  thread2 := (param) => {
    atomic {
      b := {bar: 2}
    }
  };
  tStart(thread1, 0);
  tStart(thread2, 0)
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Modifying Address
var a, b, thread1, thread2 in
  thread1 := (param) => {
    atomic {
      a := {foo: 1}
    }
  };
  thread2 := (param) => {
    atomic {
      b := {bar: 2}
    }
  };
  tStart(thread1, 0);
  tStart(thread2, 0)

Same address,
different objects
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Synchronization

• “Make sure that the commit process is 
atomic (i.e no race condition) using thread 
synchronization techniques.”

• What if we try to commit two Logs to 
the same store at the same time?

• What if the Logs conflict with each 
other?  (i.e. different values for the same 
address)
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Synchronization

• Easy way: use the synchronized 
construct

• Internally uses locks, but this is only a 
performance thing anyway

var a = 5
synchronized {
  a = a + 1
}
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Nested atomic
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testAtomicAtomic1
var a, b in
  b := 5;

  atomic {
    a := b;
    atomic {
      b := 3;
      a := b
    }
  };

  output a;
  output b
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testAtomicAtomic1
var a, b in
  b := 5;

  atomic {
    a := b;
    atomic {
      b := 3;
      a := b
    }
  };

  output a;
  output b

Output:
3
3
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Nested atomic 
Implementation

• “When you exit an inner atomic section, 
commit the changes to the log of the 
enclosing atomic section.”

• Now Logs need to be handle commits in 
addition to the global store

• Need to somehow record what to 
commit to (The global store?  A Log?  If 
a Log, which Log?)
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tStart Within atomic
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testThreadAtomic2
.not
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testAtomicThread1

var a, b, thread1 in
  a := 0;
  thread1 := (param) => {
    while (a < 5000) {
      a := a + 1
    }
  };
  atomic {
    tStart(thread1, 0)
  };
  output a
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testAtomicThread1

var a, b, thread1 in
  a := 0;
  thread1 := (param) => {
    while (a < 5000) {
      a := a + 1
    }
  };
  atomic {
    tStart(thread1, 0)
  };
  output a

Output:
5000
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testAtomicThread2
_1.not
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testAtomicThread2
_1.not

• Output depends on thread schedule

• Final output is always 5000

• Other two values range anywhere from 0 
to 5000
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Implementing tStart 
within atomic

• “Make sure that all the threads within an 
atomic section complete their execution 
before performing a commit.”

• Completed means a thread is dead

• Threads will die on their own when they 
complete their execution (assuming your 
tStart implementation works 
correctly)
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