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Overview

• Example online going over fail03.not  
(from the test suite) in depth

• A type system for secure information flow

• Implementing said type system
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Flashback: Assignment 2

• Implemented dynamically enforced secure 
information flow via label tracking

• Each Storable is labeled with a tag 
describing its security level

• Security levels interact in well-defined 
ways
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Security Levels

Public

Secret

Alice Bob

Most Secure

Least Secure

⊑⊑

⊑ ⊑

Most Precise

Least Precise
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Basic Idea

• Specify which channel we output to 
(public, secure, etc.)

• Only output values of equal or lesser 
security than the specified value (i.e. do not 
output something secure on a public 
channel)

• When values interact to produce new 
values, the new values take the security 
level of the most secure thing they touched
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Example

var x, y in

output secret "enter secret number: ";
x := input secret num;
y := x;

output public y

Friday, March 1, 13



Issues

• This system works, but there are two 
major issues with it (well, 1.5 major issues)

• What’s problematic?

Friday, March 1, 13



#1: Termination Leaks

• Whether or not a program halts can leak a 
bit to an attacker

• In a dynamic system, certain kinds of leaks 
are transformed into termination leaks

• I.e. instead of outputting a secret value to 
public, throw an exception and terminate 
instead
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#2: Dynamic

var x, y in
 x := input secret num;
 y := input public num;
 if (y = 42) {
   output public x
 }
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A Solution

• A static type system and type checker, 
specifically for secure information flow

• If a program typechecks, then it is 
guaranteed that it is secure

• Type systems being type systems, if it does 
not typecheck, it still might be secure

Friday, March 1, 13



Assignment 5

• Implement a type checker for secure 
information flow for miniJS

• Same syntax from assignment 2

• Implicitly typed

• The type system, along with all the 
necessary rules, is provided

• Overall very similar to the type system 
coverage in the lecture
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Major Difference from 
Lecture

• Lecture is using equivalence constraints

• Solved using the union-find data structure

• This assignment will use subset constraints

• These slides cover how to solve these
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Three Core Challenges

1. Understanding the math

2. Implementing the math

3. Solving the constraints
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#1 Understanding The 
Math

• Basics needed to understand it covered 
extensively in lecture

• Biggest difference from lecture: L is used as 
a type variable instead of T, since L is a 
security level
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#2 Implementing Math

• General rule: implement as close to the 
math as possible

• The more it deviates, the more difficult it is 
to reason about whether or not they are 
equivalent

• ...and the more difficult it becomes to 
track down bugs
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Implementing Math
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#3: Solving the 
Constraints
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Constraint Generation

• Very similar to how constraints were 
generated in lecture

• Based on subsets instead of equality
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Constraint Generation
Once all the rules have completed, we end
up with a bunch of constraints like these:

Public ⊑ L₁
Public ⊑ L₂
Public ⊑ Secret
Public ⊑ L₃
L₃ ⊑ L₁
L₂ ⊑ L₄
Secret ⊑ L₄
...where L₁, L₂, and L₃
are type variables
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Constraint Meaning

• These constraints show what the syntax of 
the program says about the security lattice

• We already know what the security lattice 
looks like

• If the two are consistent, the program 
typechecks

• If there are inconsistencies, the program 
fails to typecheck
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Finding Inconsistencies

Public

Secret

Alice Bob

⊑⊑

⊑ ⊑

If any constraints violate this 
partial order, it means the
program is not well-typed

Secret ⊑ Public
Secret ⊑ Bob
Secret ⊑ Alice
Bob ⊑ Public
Alice ⊑ Public
Bob ⊑ Alice
Alice ⊑ Bob
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Not that Easy

• What about type variables?

• Need a way to map these back to concrete 
types

Public ⊑ L₁
Public ⊑ L₂
Public ⊑ Secret
Public ⊑ L₃
L₃ ⊑ L₁
L₂ ⊑ L₄
Secret ⊑ L₄
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Coalescing Constraints

Public ⊑ L₁
Public ⊑ L₂
Public ⊑ Secret
Public ⊑ L₃
L₃ ⊑ L₁
L₂ ⊑ L₄
Secret ⊑ L₄

Public

Secret

L₁
L₂L₃

L₄
Edges denote ⊑
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Getting the Full ⊑

Public

Secret

L₁
L₂L₃

L₄

If node n1 can reach node n2, then n1 ⊑ n2

Public ⊑: {L₁, L₂, L₃, L₄, Secret}
Secret ⊑: {L₄}
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Cycles
• The graph can contain cycles

• This should not break anything

Public
SecretL₁

L₂ Public ⊑: {L₁, L₂}
Secret ⊑: {L₁, L₂}
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Final Step
• Verify the full sets are consistent

• Only need to consider concrete security 
levels (public, secure, etc.)

Secret ⊑ Public
Secret ⊑ Bob
Secret ⊑ Alice
Bob ⊑ Public
Alice ⊑ Public
Bob ⊑ Alice
Alice ⊑ Bob

Secret cannot reach Public
Secret cannot reach Bob
Secret cannot reach Alice
Bob cannot reach Public
Alice cannot reach Public
Bob cannot reach Alice
Alice cannot reach Bob
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Constraint Solver 
Implementation

• Free to use mutability

• It is not necessary to make an explicit 
graph, but you are free to do so if you wish

• It is likely easier to avoid it if possible

• For each constraint, add an edge and 
possibly nodes to this graph

• A global counter will be needed for 
generating unique type variables
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Removed for Simplicity

• Each node should have an edge pointing to 
itself

• Since the definition of ⊑ includes 
equality, for all levels l, l ⊑ l

• Hint: this can be exploited in 
implementations that do not have an 
explicit graph
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The Math in Depth
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fail03.not Example
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