
CS162 Week 8
Kyle Dewey

Friday, March 1, 13

Overview

• Example online going over fail03.not
(from the test suite) in depth

• A type system for secure information flow

• Implementing said type system

Friday, March 1, 13

Flashback: Assignment 2

• Implemented dynamically enforced secure
information flow via label tracking

• Each Storable is labeled with a tag
describing its security level

• Security levels interact in well-defined
ways

Friday, March 1, 13

Security Levels

Public

Secret

Alice Bob

Most Secure

Least Secure

⊑⊑

⊑ ⊑

Most Precise

Least Precise

Friday, March 1, 13

Basic Idea

• Specify which channel we output to
(public, secure, etc.)

• Only output values of equal or lesser
security than the specified value (i.e. do not
output something secure on a public
channel)

• When values interact to produce new
values, the new values take the security
level of the most secure thing they touched

Friday, March 1, 13

Example

var x, y in

output secret "enter secret number: ";
x := input secret num;
y := x;

output public y

Friday, March 1, 13

Issues

• This system works, but there are two
major issues with it (well, 1.5 major issues)

• What’s problematic?

Friday, March 1, 13

#1: Termination Leaks

• Whether or not a program halts can leak a
bit to an attacker

• In a dynamic system, certain kinds of leaks
are transformed into termination leaks

• I.e. instead of outputting a secret value to
public, throw an exception and terminate
instead

Friday, March 1, 13

#2: Dynamic

var x, y in
 x := input secret num;
 y := input public num;
 if (y = 42) {
 output public x
 }

Friday, March 1, 13

A Solution

• A static type system and type checker,
specifically for secure information flow

• If a program typechecks, then it is
guaranteed that it is secure

• Type systems being type systems, if it does
not typecheck, it still might be secure

Friday, March 1, 13

Assignment 5

• Implement a type checker for secure
information flow for miniJS

• Same syntax from assignment 2

• Implicitly typed

• The type system, along with all the
necessary rules, is provided

• Overall very similar to the type system
coverage in the lecture

Friday, March 1, 13

Major Difference from
Lecture

• Lecture is using equivalence constraints

• Solved using the union-find data structure

• This assignment will use subset constraints

• These slides cover how to solve these

Friday, March 1, 13

Three Core Challenges

1. Understanding the math

2. Implementing the math

3. Solving the constraints

Friday, March 1, 13

#1 Understanding The
Math

• Basics needed to understand it covered
extensively in lecture

• Biggest difference from lecture: L is used as
a type variable instead of T, since L is a
security level

Friday, March 1, 13

#2 Implementing Math

• General rule: implement as close to the
math as possible

• The more it deviates, the more difficult it is
to reason about whether or not they are
equivalent

• ...and the more difficult it becomes to
track down bugs

Friday, March 1, 13

Implementing Math

Friday, March 1, 13

#3: Solving the
Constraints

Friday, March 1, 13

Constraint Generation

• Very similar to how constraints were
generated in lecture

• Based on subsets instead of equality

Friday, March 1, 13

Constraint Generation
Once all the rules have completed, we end
up with a bunch of constraints like these:

Public ⊑ L₁
Public ⊑ L₂
Public ⊑ Secret
Public ⊑ L₃
L₃ ⊑ L₁
L₂ ⊑ L₄
Secret ⊑ L₄
...where L₁, L₂, and L₃
are type variables

Friday, March 1, 13

Constraint Meaning

• These constraints show what the syntax of
the program says about the security lattice

• We already know what the security lattice
looks like

• If the two are consistent, the program
typechecks

• If there are inconsistencies, the program
fails to typecheck

Friday, March 1, 13

Finding Inconsistencies

Public

Secret

Alice Bob

⊑⊑

⊑ ⊑

If any constraints violate this
partial order, it means the
program is not well-typed

Secret ⊑ Public
Secret ⊑ Bob
Secret ⊑ Alice
Bob ⊑ Public
Alice ⊑ Public
Bob ⊑ Alice
Alice ⊑ Bob

Friday, March 1, 13

Not that Easy

• What about type variables?

• Need a way to map these back to concrete
types

Public ⊑ L₁
Public ⊑ L₂
Public ⊑ Secret
Public ⊑ L₃
L₃ ⊑ L₁
L₂ ⊑ L₄
Secret ⊑ L₄

Friday, March 1, 13

Coalescing Constraints

Public ⊑ L₁
Public ⊑ L₂
Public ⊑ Secret
Public ⊑ L₃
L₃ ⊑ L₁
L₂ ⊑ L₄
Secret ⊑ L₄

Public

Secret

L₁
L₂L₃

L₄
Edges denote ⊑

Friday, March 1, 13

Getting the Full ⊑

Public

Secret

L₁
L₂L₃

L₄

If node n1 can reach node n2, then n1 ⊑ n2

Public ⊑: {L₁, L₂, L₃, L₄, Secret}
Secret ⊑: {L₄}

Friday, March 1, 13

Cycles
• The graph can contain cycles

• This should not break anything

Public
SecretL₁

L₂ Public ⊑: {L₁, L₂}
Secret ⊑: {L₁, L₂}

Friday, March 1, 13

Final Step
• Verify the full sets are consistent

• Only need to consider concrete security
levels (public, secure, etc.)

Secret ⊑ Public
Secret ⊑ Bob
Secret ⊑ Alice
Bob ⊑ Public
Alice ⊑ Public
Bob ⊑ Alice
Alice ⊑ Bob

Secret cannot reach Public
Secret cannot reach Bob
Secret cannot reach Alice
Bob cannot reach Public
Alice cannot reach Public
Bob cannot reach Alice
Alice cannot reach Bob

Friday, March 1, 13

Constraint Solver
Implementation

• Free to use mutability

• It is not necessary to make an explicit
graph, but you are free to do so if you wish

• It is likely easier to avoid it if possible

• For each constraint, add an edge and
possibly nodes to this graph

• A global counter will be needed for
generating unique type variables

Friday, March 1, 13

Removed for Simplicity

• Each node should have an edge pointing to
itself

• Since the definition of ⊑ includes
equality, for all levels l, l ⊑ l

• Hint: this can be exploited in
implementations that do not have an
explicit graph

Friday, March 1, 13

The Math in Depth

Friday, March 1, 13

fail03.not Example

Friday, March 1, 13

