
CS162 Week 9
Kyle Dewey

Friday, March 8, 13

Overview

• What needs to be done

• Quirks with GC on miniJS

• Implementing GC on miniJS

Friday, March 8, 13

The Plan

• Implement three garbage collectors:
semispace, mark/sweep, and generational

• Semispace + mark/sweep: 90% of score

• Semispace + mark/sweep + generational:
130% of score

Friday, March 8, 13

GC Reachability
• Reachability means we can access the

object

Friday, March 8, 13

Liveness

• If we can reach an object from the root
set, then the object is live

• If we cannot reach it, then it is dead

• Reclaim only dead objects

Friday, March 8, 13

Question

• The typical root set consists of the values
of variables on the stack

• What is the root set for miniJS?

var a, obj in
 obj := {foo: “bar”};
 obj.bar := obj.foo;
 a := 12;
 obj := {b: a, o: obj}

Friday, March 8, 13

Issue #1: Variables on
the Stack

• miniJS does not have a usual stack

• Variable values tracked by recursive calls to
eval with InScope objects

Friday, March 8, 13

Solving Issue #1

• Introduce a global mutable stack that acts
as the environment

• Variable to address bindings are pushed
onto it in the same was as seen with a
usual runtime stack

Friday, March 8, 13

Original

New

Friday, March 8, 13

Issue #2: Intermediate
Values

• What’s problematic with this for GC?

Friday, March 8, 13

Issue #2: Intermediate
Values

• We can operate on store-allocated values
without having a binding in the environment

({foo: “bar”}).baz := {“temp”: 1}

Friday, March 8, 13

Solving Issue #2

• Put all temporary variables into the root
set

Friday, March 8, 13

Getting the Root Set

• Calling RootSet() will get the global
root set

• This root set is a set of Storable, not
Address as in the usual definition

Friday, March 8, 13

Representing the Heap

• HeapInterface provides functions for
reading / writing objects

• See the StubCollector for detailed
information on usage

Friday, March 8, 13

Heap With
StubCollector

• After allocating the number 1:

Allocated
Metadata

Size: 2
Type: NumV

NumV(1)

Friday, March 8, 13

Heap With
StubCollector

• After allocating the number 1 and a
closure:

Allocated
Metadata

Size: 2
Type: NumV

NumV(1)

Allocated
Metadata

Size: 4
Type: CloV

<<Variable
Names>>

<<Closure
Term>>

<<Closure
Environment

>>

Friday, March 8, 13

Heap With
StubCollector

• After allocating the number 1, a closure,
and the string “foo”:

Allocated
Metadata

Size: 2
Type: NumV

NumV(1)

Allocated
Metadata

Size: 4
Type: CloV

<<Variable
Names>>

<<Closure
Term>>

<<Closure
Environment

>>

Allocated
Metadata

Size: 2
Type: StrV

StrV(“foo”)

Friday, March 8, 13

Heap With
StubCollector

• After allocating the number 1, a closure, the
string “foo”, and the boolean true:

Allocated
Metadata

Size: 2
Type: NumV

NumV(1)

Allocated
Metadata

Size: 4
Type: CloV

<<Variable
Names>>

<<Closure
Term>>

<<Closure
Environment

>>

Allocated
Metadata

Size: 2
Type: StrV

StrV(“foo”)

Allocated
Metadata

Size: 2
Type: BoolV

BoolV(true)

Friday, March 8, 13

The Collectors

• Two key functions: gcAlloc and gcRead

• These do exactly what their names suggest

Friday, March 8, 13

StubCollector

Friday, March 8, 13

Mutation in miniJS
• Old semantics: update the Storable at a

given address to be some new Storable

• What’s wrong with this with respect to the
new heap?

Friday, March 8, 13

Mutation Issue

• Problem: different objects take up different
lengths

• Since miniJS is dynamically typed, we could
switch the kind of object stored

• If we want to store a new object that’s
bigger than what the old one took up, we
generally won’t have the space at the same
address

Friday, March 8, 13

Mutation Issue
var a, b in
 a := 1;
 b := 2;
 a := () => {output b}

Allocated
Metadata

Size: 2
Type: NumV

NumV(1)

a

Friday, March 8, 13

Mutation Issue
var a, b in
 a := 1;
 b := 2;
 a := () => {output b}

Allocated
Metadata

Size: 2
Type: NumV

NumV(1)

Allocated
Metadata

Size: 2
Type: NumV

NumV(2)

a b

Friday, March 8, 13

Mutation Issue
var a, b in
 a := 1;
 b := 2;
 a := () => {output b}

Allocated
Metadata

Size: 2
Type: NumV

NumV(1)

Allocated
Metadata

Size: 2
Type: NumV

NumV(2)

a b

Closures take up 4 units, but the original address has only 2

Friday, March 8, 13

Handling Mutation

• Instead of trying to reuse addresses, we
allocate to a new address

• We update the old address to have the
same location as the new address

Friday, March 8, 13

Handling Mutation
• For this update to work, your interpreter

must have the following invariant: at any
point in time, there is at most one
Address object associated with each
underlying position in the heap

• If addresses are only made in gcAlloc for
freshly allocated values, this will be
guaranteed

• Without this, we can still have Addresses
that point to the old address after update

Friday, March 8, 13

Other Assorted Notes

Friday, March 8, 13

Tracing

• Be sure to look at values.scala

• Extra kinds of Storables have been
added

• This miniJS has lists

• ObjectVs are implemented internally
with lists that extend Storable

• You need to be able to trace these lists

Friday, March 8, 13

Backpointers in
Generational GC

• The skeleton code handles backpointers
already

• You may need to trace these backpointers
entirely, in violation of typical generational
GC

• Underlying issue: a reference from the
tenured space to the nursery may be made
long before a tenured object is updated

Friday, March 8, 13

trace

• A special trace function is provided,
which will simply print the string specified if
the -trace flag is set

• Very useful for debugging

• If there is inadequate tracing, you will be
penalized

Friday, March 8, 13

assert

• For any assumptions you have, you should
make sure they are true with the assert
statement

• Many bugs will not trigger a typical error
until long after they occurred, and proper
usage of assert can help shorten this gap

• I.e. assert can cause bugs to reveal
themselves sooner than usual

Friday, March 8, 13

freelist.scala
and gc.scala

Friday, March 8, 13

