CS162 Week 9

Kyle Dewey

Overview

® VWhat needs to be done
® Quirks with GC on mini)S

® |mplementing GC on mini)S

The Plan

® |mplement three garbage collectors:
semispace, mark/sweep, and generational

® Semispace + mark/sweep: 90% of score

® Semispace + mark/sweep + generational:
130% of score

Friday, March 8, 13

GC Reachability

® Reachability means we can access the
object

Unreachable Objects \ Y \
(garbage)

‘-
‘ - Y
e s e '_
A b, %
hY
b

K
/B*

Reachable Objects

Root Set of
References

5
¢
A
K
¢
¢
y
5
4
‘J
i

Friday, March 8, 13

Liveness

® |f we can reach an object from the root
set, then the object is live

® |f we cannot reach it, then it is dead

® Reclaim only dead objects

Friday, March 8, 13

Question

® The typical root set consists of the values
of variables on the stack

® What is the root set for mini)S?

var a, oObj 1n

obj] := {foo: “bar”};
obj.bar := obj.foo;
a := 12;

obj] := {b: a, o: obj}

Friday, March 8, 13

Issue #|:Variables on
the Stack

® miniJS does not have a usual stack

® Variable values tracked by recursive calls to
eval with ITnScope objects

(x5, T) =

= xs map (_.x » (o += UndefV())
inScope(p ++ bindings) eval t

}

Solving Issue #|

® |ntroduce a global mutable stack that acts
as the environment

® Variable to address bindings are pushed
onto it in the same was as seen with a
usual runtime stack

Friday, March 8, 13

et we, 1) o Original

{
= xs map (_.x » (o += UndefV()))
1nScope(p ++ bindings) “eval t
}
Let(,) = New
{
= addBindings(xs.map(_.x - UndefV()))
= eval(t)
0. popTlmes(addrs size)
retval
}
>f addBindings (: Seq[(String, Storable)]): Seql[Address] =

blndlngs map(palr = {
(o0 += pair._2)
D. push(palr 1 - ref)
ref

})

Friday, March 8, 13

Issue #2: Intermediate
Values

® What's problematic with this for GC?

())) =
{
eval(el)
eval(e2)
eval(e3)

(adr, fld) {
(:) :) =
{

o(adr) = toObj(o(adr)) :+ (fld - rhs)
UndefV()
s

= undefined

Friday, March 8, 13

Issue #2: Intermediate
Values

® VWe can operate on store-allocated values
without having a binding in the environment

({foo: “bar”}) .baz := {“temp”: 1}

Solving Issue #2

® Put all temporary variables into the root
set

(el, e2,) =

= eval(el)
RootSet.pushExtra(adr)

= eval(e2)
RootSet.pushExtra(fld)

= eval(e3)
RootSet.pushExtra(rhs)

(adr, fld) {
(: / , : /) =
{

o(adr) = toObj(o(adr)) :+ (fld - rhs)
RootSet.popExtraTimes(3)
UndefV()

}

= undefined

Friday, March 8, 13

Getting the Root Set

e Calling RootSet () will get the global
root set

® [his rootsetis asetof Storable, not
Address as in the usual definition

Representing the Heap

(:) {
Array[Any]l(size)

}

// blocksAllocated includes the metadata
(. .

// blocksAvailable includes the metadata
(: , .)

® HeapInterface provides functions for
reading / writing objects

® See the StubCollector for detailed
information on usage

Friday, March 8, 13

Heap With
StubCollector

® After allocating the number |I:

Allocated
Metadata
Size: 2
Type: NumV

NumV(1)

Heap With
StubCollector

® After allocating the number | and a

closure:
Allocated Allocated
Metadata NumV(1) Metadata | <<Variable | <<Closure
Size: 2 Size: 4 Names>> Term>>

Type: NumV Type: CloV

<<Closure
Environment

>>

Friday, March 8, 13

StubCollector

Heap With

® After allocating the number |, a closure,
and the string “foo’:

Allocated Allocated
Metadata NumV(1) Metadata | <<Variable | <<Closure
Size: 2 Size: 4 Names>> Term>>
Type: NumV Type: CloV
<<Closure Allocated
, Metadata (L
Environment . StrV(“foo”)
o= Size: 2
Type: StrV

Friday, March 8, 13

Heap With
StubCollector

® After allocating the number 1, a closure, the
string “foo”’, and the boolean true:

Allocated Allocated
Metadata NumV(1) Metadata | <<Variable | <<Closure
Size: 2 Size: 4 Names>> Term>>
Type: NumV Type: CloV
<<Closure Allocated Allocated
. Metadata e s Metadata
Environment - StrV(“foo”) . BoolV(true)
o= Size: 2 Size: 2
Type: StrV Type: BoolV

Friday, March 8, 13

The Collectors

® [wo key functions: gcAlloc and gcRead

® These do exactly what their names suggest

gcAlloc(s:) :
gcRead(a: Address): Storable

StubCollector

Mutation in mini)S
® Old semantics: update the Storable ata

given address to be some new Storable

® What'’s wrong with this with respect to the
new heap?

((%),) =
= eval(e)
ol p(x)) =v
}

Mutation Issue

® Problem: different objects take up different
lengths

® Since mini|S is dynamically typed, we could
switch the kind of object stored

® |f we want to store a new object that’s
bigger than what the old one took up, we
generally won’t have the space at the same
address

Mutation Issue

var a, b 1n
a := 1;
b := 2;
a := () => {output Db}

Allocated
Metadata
Size: 2
Type: NumV

NumV(I)

Friday, March 8, 13

Mutation Issue

var a, b 1n
a := 1;
b := 2;
a := () => {output Db}

a b
Allocated Allocated
Metadata Metadata
Size: 2 NumV(l) Size: 2 NumV(2)
Type: NumV Type: NumV

Friday, March 8, 13

Mutation Issue

var a, b 1n
a := 1;
b := 2;
a () => {output b}

Closures take up 4 units, but the original address has only 2

a b
Allocated Allocated
Metadata Metadata
Size: 2 NumV(l) Size: 2 NumV(2)
Type: NumV Type: NumV

Friday, March 8, 13

Handling Mutation

® |nstead of trying to reuse addresses, we
allocate to a new address

® We update the old address to have the
same location as the new address

gcModify(a: , Vi) {
// done via emulation - alloc again and update the address
RootSet.pushExtra(v)
= gcAlloc(v)
RootSet.popExtra()
a. loc = newAddr. loc

}

Friday, March 8, 13

Handling Mutation

® For this update to work, your interpreter
must have the following invariant: at any
point in time, there is at most one
Address object associated with each

underlying position in the heap

® |f addresses are only made in gcAlloc for

freshly allocated values, this will be
guaranteed

® VWithout this, we can still have Addresses
that point to the old address after update

Friday, March 8, 13

Other Assorted Notes

Tracing

® Be sure to lookat values.scala

® Extra kinds of Storables have been
added

® This miniJS has lists

® ObjectVs are implemented internally
with lists that extend Storable

® You need to be able to trace these lists

Friday, March 8, 13

Backpointers in
Generational GC

® The skeleton code handles backpointers
already

® You may need to trace these backpointers

entirely, in violation of typical generational
GC

® Underlying issue: a reference from the
tenured space to the nursery may be made
long before a tenured object is updated

Crace

® A special trace function is provided,

which will simply print the string specified if
the —trace flag is set

® Very useful for debugging

® |f there is inadequate tracing, you will be
penalized

assert

® For any assumptions you have, you should
make sure they are true with the assert

statement

® Many bugs will not trigger a typical error
until long after they occurred, and proper
usage of assert can help shorten this gap

® |e.assert can cause bugs to reveal
themselves sooner than usual

Friday, March 8, 13

freelist.scala
and gc.scala

