
Natural Deduction for Classical 1st-Order Logic

1 Background on Logic
Logic was developed as a way to reason about valid forms of argument. Consider the case of the magic rock that keeps tigers away
(from the Simpsons, paraphrased):

Lisa: By your logic I could claim that this rock keeps tigers away.
Homer: Oh, how does it work?
Lisa: It doesn’t work...it’s just a stupid rock. But I don’t see any tigers around, do you?
Homer: Lisa, I want to buy your rock.

Clearly there’s something wrong with that argument. Logic is the study of what kinds of arguments make sense and what kinds
do not—in other words, given certain facts, what conclusions can I reasonably draw? In the West, formal logic started with Aristotle
and his syllogistic reasoning. Logic was also developed independently from the Greeks in India and China. Aristotelian logic had a
huge impact in the West for a long time, but modern forms of logic started in the 1800s with George Boole (boolean algebra) and
Gottlob Frege (predicate logic). When we look at formal logic, it seems like it’s just symbol pushing, with no real meaning, e.g.,
(A^B =) C) =) (¬C =) ¬A_¬B). And that’s exactly what it is! In fact, that’s why formal logic is so powerful. It depends on
the syntactic form of the argument, not the semantic meaning of the argument. This means that logic tells us what forms of argument
are acceptable without depending on what the argument is actually about—sports, politics, science, it doesn’t matter. Here are some
important definitions related to logic:

Interpretation. An interpretation maps the logical syntax (i.e., the symbols used to make logical formulae) to a specific domain of
discourse; this gives an argument a specific meaning. For example, in the logical formula above we could assign the interpretation A
= “you attend class”, B = “you attend discussion section”, and C = “you get a good grade”. Thus, if you don’t get a good grade it
must be that you didn’t attend class or you didn’t attend discussion section.

Validity. A logical formula is valid if it is guaranteed to be true no matter what interpretation you give it. The logical formula in
the previous example is a valid formula.

Satisfiability. A logical formula is satisfiable if there is some interpretation that can make it true. For example, the formula A ^ B
is satisfied under the interpretation A = “my hair is brown” and B = “I have blue eyes”, but there are also interpretations where it is
not satisfied, e.g., A = “my hair is pink” and B = “I have purple eyes”. In computer science we’re often interested in taking a formula
and asking if it’s satisfiable and, in particular, what interpretation satisfies it.

Unsatisfiability. A logical formula is unsatisfiable if there is no interpretation that makes it true. For example, A ^ ¬A.

2 Natural Deduction
There are several ways to define first-order logic. In Computer Science most people are introduced to it via the Hilbert-style axiomatic
formulation; in philosophy most people learn it via the Natural Deduction formulation. There are also other formulations possible,
such as the sequent calculus. These all define the same thing, they just provide di↵erent perspectives and di↵erent ways of getting
to the same end. For reasons that will become clear later in the course, we’ll use the natural deduction style. Natural deduction was
invented by Gerhard Gentzen in the early 1900s. He wanted to develop a definition of logic that comes as close as possible to the
way that people actually think, hence the term “natural”. Gentzen made huge contributions to the study of logic; he was also a Nazi
and member of the SS. We will separate the man from the logic and only look at the logic.

The fundamental notion of natural deduction is a judgement on the truth of a proposition based on evidence. A proposition is
something that can be either true or false, e.g., “it is raining”. A judgement says whether a proposition is true based on some evidence

1

(e.g., observation, or a derivation from known facts). For example, we could have the proposition “it is raining” and the judgement
“the proposition ’it is raining’ is true”, based on the evidence that I can see it raining. Propositions are given as formulae in the syntax
of first-order logic.

3 Syntax for Logical Propositions

x 2 Variable f 2 Function p 2 Predicate

t 2 Term ::= x | f (~t)

A, B 2 Proposition ::= p(~t) | > | ? | A ^ B | A _ B | A) B | ¬A | 8x.A | 9x.A

Where ~t is a sequence of terms of length equal to the arity of the given function or predicate symbol. When we need multiple
variables we’ll use letters u, v,w, x, y, z. When we need multiple function symbols we’ll use f , g, h, i, j, k. When we need multiple
predicate symbols we’ll use m, n, o, p, q, r, s. When we need multiple propositions we’ll use A, B,C,D, E. As a last resort, we’ll use
subscripts to distinguish names, so that, for example, x1 and x2 indicate di↵erent variables.

Every function and predicate symbol has an arity, which is simply the number of arguments that it accepts. For example, a
function f (u, v) has arity 2 and a function g(u, v,w) has arity 3. We’ll sometimes indicate the arity using notation such as f /2 (for
function symbol f with arity 2) and g/3 (for function symbol g with arity 3). Functions and predicates can have arity 0, in which case
we write them without parentheses. For example, if we have a predicate symbol p/0 we’ll write p instead of p(). Function symbols
with 0 arity are called constants and predicate symbols with 0 arity are called propositional variables.

Function symbols f , g, etc. stand for functions that map objects to other objects. Of course, without an interpretation we don’t
know what those functions and objects are—an interpretation will include a specific domain of objects and map each function symbol
to a function are over that domain. For example, one interpretation might specify that the objects are people, and connect the function
symbol fatherOf /1 with the function that takes a person and returns that person’s father, e.g., fatherOf (Mary) = John. Terms, which
as indicated above are made up of variables and functions over terms, are just names for objects in some unknown domain. They
don’t have any inherent meaning until we give them an interpretation, which will provide a specific domain of objects. Di↵erent
interpretations may give them di↵erent meanings.

Predicate symbols p, q, etc. stand for relations between objects. Recall that a relation is a set of tuples. For example, we might
define the relation {(grass, green), (sky, blue), (apple, red)}. Again, without an interpretation we don’t know what the relations or
objects are; an interpretation will map each predicate symbol to a specific relation over the domain of objects for that interpretation.
For example, one interpretation might map the predicate symbol color/2 to the relation defined above.

3.1 Example Terms (Specifying Objects in a Domain)
• x

• f (x, g(a, b))

• f (g(h(x, y), i, j(x, z)), h(y, z))

3.2 Example Propositions (Specifying Relations Between Objects)
• ¬8x.(q(x) _ ¬p(x))

• 9x.q(x, f (x), g) ^ s(x)) 8x.r(h, x)

• 8x9y.(r(x, y)) r(y, x))

4 Making Judgements
Given a proposition, we want to be able to make a judgement about it. There are a number of di↵erent kinds of judgements that we
could make, but we’ll focus on one of the most important: truth. We make judgements based on evidence. Some evidence will be
given to us as facts (i.e., axioms). Other evidence will come from derivations based on inference rules. These rules give us guidelines
for how to make new judgements based on existing judgements. Judgements will often make use of hypotheses, i.e., propositions
that we will temporarily assume are true while trying to make the judgement. A hypothesis is just a sequence of propositions; we
will symbolize an arbitrary hypothesis using the letter �.

2

A judgement will be of the form ’� ` A true’; this says that if we assume the propositions contained in � are true, then we are
justified in saying that proposition A is true. We will take the judgement �, A ` A true as an axiom; i.e., we always know that under
the assumption that A is true, we can conclude that A is true. The notation ’�, A’ means that we’re appending the proposition A to the
list of propositions �.

5 Inference Rules
Inference rules are just a compact way of writing if..then statements. They consist of a horizontal line with zero or more judge-
ments on top of the line, called premises, and exactly one judgement on the bottom of the line, called the conclusion. An inference
rule is saying that if all of the premises can be proven true, then the conclusion must also be true.

For each logical connective >,?,^,_,),¬,8,9 there are rules that tell us how we can use them to make judgements. Each
connective (except for ?) has an introduction rule that shows how we can judge that a proposition using that connective is true. Each
connective (except for >) has an elimination rule that shows how we can judge that a proposition is true based on knowing some
other proposition using that connective is true. Note that the rules below usually don’t specify the contents of �; it is there only to
make clear that the rules are valid no matter what assumptions you make, as long as the assumptions are consistent.

Logical Connective Introduction Rule Elimination Rule

True � ` > true >I

False
� ` ? true
� ` A true ?E

Conjunction � ` A true � ` B true
� ` A ^ B true ^I

� ` A ^ B true
� ` A true

^EL

� ` A ^ B true
� ` B true

^ER

Disjunction

� ` A true
� ` A _ B true

_IL

� ` A _ B true �, A ` C true �, B ` C true
� ` C true _E

� ` B true
� ` A _ B true

_IR

Implication
�, A ` B true
� ` A) B true)I � ` A) B true � ` A true

� ` B true)E

Negation
�, A ` ? true
� ` ¬A true ¬I � ` A true � ` ¬A true

� ` ? true ¬E

Universal Quantification
� ` A[x 7! a] true
� ` 8x.A true 8I � ` 8x.A true

� ` A[x 7! t] true 8E

Existential Quantification
� ` A[x 7! t] true
� ` 9x.A true 9I

� ` 9x.A true �, A[x 7! a] ` B true
� ` B true 9E

3

In the universal and existential quantifier rules, it is very important that the unknown a is fresh, i.e., it cannot occur in any
hypothesis or in 8x.A itself. We will see an example of why this is important in Section 6.4.

6 Proof Examples
Here we give several examples of how to prove a judgement about a given proposition. Note in the following proofs that the desired
conclusion is at the bottom of the proof. We can think of these proofs as derivation trees rooted in the conclusion, growing upwards
according to the appropriate introduction and elimination rules. The leaves of the tree are judgements that are trivially true; in this
case, they are all of the form �, A ` A true.

6.1 Example 1
We will prove the following judgement: ` p ^ q) q ^ p true.

p ^ q ` p ^ q true
p ^ q ` q true

^EL
p ^ q ` p ^ q true

p ^ q ` p true
^ER

p ^ q ` q ^ p true
^I

` p ^ q) q ^ p true
)I

6.2 Example 2
We will prove the following judgement: ` p) (q) (p ^ q)) true.

p, q ` p true p, q ` q true
p, q ` p ^ q true

^I

p ` q) (p ^ q) true
)I

` p) (q) (p ^ q)) true
)I

6.3 Example 3
We will prove the following judgement: ` (p) q) ^ (p) r)) (p) (q ^ r)) true. In the following proof, in order to fit the proof
on the page we will abbreviate the assumption (p) q) ^ (p) r), p as �.

� ` p true
� ` (p) q) ^ (p) r) true

� ` p) q true
^ER

� ` q true
)E

� ` p true
� ` (p) q) ^ (p) r) true

� ` p) r true
^EL

� ` r true
(p) q) ^ (p) r), p ` q ^ r true

^I

(p) q) ^ (p) r) ` p) (q ^ r) true
)I

` (p) q) ^ (p) r)) (p) (q ^ r)) true
)I

6.4 Example 4
In this example we will illustrate the importance of using a fresh a in the universal quantification introduction rule by giving an
incorrect proof of the following judgement: ` 8x8y.p(x)) p(y) true. This judgement is obviously wrong; the proof will be
incorrect because it fails to properly use a fresh a.

p(a) ` p(a) true
p(a) ` 8x.p(x) true

8I

p(a) ` p(b) true
8E

` p(a)) p(b) true
)I

` 8y.p(a)) p(y) true
8I

` 8x8y.p(x)) p(y) true
8I

The problem is at the top of the derivation tree, where we used the 8I rule to turn p(a) into 8x.p(x). We can’t do that because a
isn’t fresh—it’s used in the hypothesis of the top judgement.

4

