
Polymorphically-Typed FUN

1 PolyFUN Syntax

x ∈ Variable n ∈ N b ∈ Bool name, cons, fld ∈ Label

prog ∈ Program ::=
−−−−−−→
typedef i e

typedef ∈ TypeDef ::= type name[~Tj] =
−−−−−−−→consi : τi

e ∈ Exp ::= x | n | b | nil | (−−−→xi :τi)⇒ e | e f (~ei)
| if e1 e2 e3 | let x = e1 in e2 | rec x :τ = e1 in e2

| L
−−−−−→
fldi : eiM | e.fld | name!cons〈~τi〉 e | case e of −−−−−−−−−−−→consi xi ⇒ ei

| [~Ti]e | e〈~τi〉

The differences from SimpleFUN syntax are: (1) user-defined variant types now include declarations of type variables that can be
used in the type definition (the [~Tj] in type name[~Tj]); (2) when we construct a variant we need to pass it the types to fill in for that
variant’s type variables (the 〈~τi〉 in name!cons〈~τi〉 e); (3) we can create a type abstraction using [~Ti]e; and (4) we can have a type
application e〈~τi〉 where e should evaluate to a type abstraction.

2 PolyFUN Type System

τ ∈ Type = num | bool | unit | (~τi)→ τr | L
−−−−−→
fldi : τiM | name〈~τi〉 | T | [~Tj]τ

The difference from SimpleFUN types are: (1) a user-defined variant type name must now include a list of types to substitute for that
variant’s type variables (the 〈~τi〉 in name〈~τi〉); types can now include type variables (symbolized here with T); and (3) we now have
polymorphic types, which are a list of type variables along with a type that uses those type variables.

Γ, x :τ ` x : τ
var

Γ ` n : num
nI

Γ ` b : bool
bI

Γ ` nil : unit nilI

Γ,−−−→xi :τi ` e : τr

Γ ` (−−−→xi :τi)⇒ e : (~τi)→ τr
→ I

Γ ` e f : (~τi)→ τr Γ `
−−−−→ei : τi

Γ ` e f (~ei) : τr
→E

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ
Γ ` if e1 e2 e3 : τ

if

Γ ` e1 : τ1 Γ, x :τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
let

Γ, x :τ1 ` e1 : τ1 Γ, x :τ1 ` e2 : τ2

Γ ` rec x :τ1 = e1 in e2 : τ2
rec

Γ `
−−−−→ei : τi

Γ ` L
−−−−−→
fldi : eiM : L

−−−−−→
fldi : τiM

rcdI Γ ` e : L
−−−−−→
fldi : τiM j ∈~i

Γ ` e.fld j : τ j
rcdE

type name[~Tj] =
−−−−−−−→consi : τi ∈ TypeDef k ∈~i Γ ` e : τk

[
−−−−−−→
Tj 7→ τ j

]
Γ ` name!consk〈~τ j〉 e : name〈~τ j〉

tdI

Γ ` e : name〈~τ j〉 type name[~Tj] =
−−−−−−−→consi : τi ∈ TypeDef

−−−−−−−−−−−−−−−−−−−−−−−→

Γ, xi :τi

[
−−−−−−→
Tj 7→ τ j

]
` ei : τ

Γ ` case e of −−−−−−−−−−−→consi xi ⇒ ei : τ
tdE

1

Γ ` e : τ
Γ ` [~Tj]e : [~Tj]τ

tabs
Γ ` e : [~Tj]τ

Γ ` e〈~τ j〉 : τ
[
−−−−−−→
Tj 7→ τ j

] tapp

The differences from SimpleFUN are in the last four type rules: tdI, tdE, tabs, and tapp. The first two are modifications of the
corresponding rules in SimpleFUN to handle polymorphic type operators. The last two are new to PolyFUN to handle generic types.

These rules use new notation that looks like this: τ
[
−−−−−−→
Tj 7→ τ j

]
(where τ can be any type). This notation means to take τ and replace

any instance of a type variable in ~Tj with the corresponding type in ~τ j. In the type checker code, this functionality is implemented
by the replace method. This notation is a little awkward in the tdE rule; essentially it’s saying to do exactly the same thing as the
Simple FUN tdE rule, except instead of mapping xi to τi we map xi to a version of τi where all of the given type variables have been
replaced.

2

