
The mini-prolog Language

Kyle Dewey and Ben Hardekopf

1 Overall Language Design

mini-prolog is a small, Prolog-like logic programming language which has been designed to be simple to understand and
implement. It still contains the core features of Prolog, namely:

• Unification as a primitive of computation.

• Backtracking and nondeterministic execution.

• A depth-first search strategy for executing nondeterministic programs.

For the sake of simplicity, certain Prolog features are intentionally missing:

• Negation as failure (\+ or not).

• The cut operator (!).

• Predicates to dynamically alter the clause database, such as assert and retract.

• Meta-programming capabilities such as forall and bagof.

• The standard built-in predicates (e.g., member and append).

The user-facing syntax is intended to be as Prolog-like as possible. Many existing Prolog programs will run unmodified as
mini-prolog programs, as long as they do not use the missing features. Any mini-prolog program will run unmodified
on a standards-compliant Prolog engine.

1

2 Internal Syntax

The user-facing, Prolog-like syntax of mini-prolog is automatically translated into an simpler internal syntax for execu-
tion. This translation is responsible for the following tasks:

• Converting lists and list operations into structures and operations on structures. For example, the list [1,2,3] in
user-facing syntax is represented in the internal syntax as the structure cons(1, cons(2, cons(3, nil))), as per
the standard inductive list definition. This simplifies the language, which need not understand lists directly.

• Lifting clause-local and query-local variables into a list of local variables at the head of each clause or query. This
simplifies the language evaluation rules by declaring all variables used in a clause up-front.

• Translating pattern-matching into unification predicates. This allows the language evaluation rules to concentrate
on unification and ignore pattern-matching.

• Translating unification between arbitrary values to a series of variable bindings (via the← operator) and unifications
on variables (via the unify operator). By permitting unification only between variables, the unification algorithm is
greatly simplified.

Here is the definition of the internal syntax:

x ∈ Variable n ∈ Z sym ∈ Symbol

prog ∈ Program ::=
−−−−→
clause query

clause ∈ Clause ::= sym(~x1) { ~x2} :− body

query ∈ Query ::= {~x} ?− body

body ∈ Body ::= body1 ∧ body2 | body1 ∨ body2 | check sym(~x) | x1 ≡ x2 | x1 ./ x2 | x← rhs | true | false

rhs ∈ Rhs ::= n | sym(~x) | exp

exp ∈ ArithExp ::= x | exp1 ⊕ exp2

⊕ ∈ ArithOp ::= + | − | × | ÷
./ ∈ RelationalOp ::=< | ≤ | > | ≥ | = | 6=

The vector notation indicates an ordered sequence; for example,
−−−−→
clause means a list of clauses and ~x means a list of

variables. A mini-prolog program prog ∈ Program is a list of clauses followed by a query. A clause consists of two parts:
(1) a head sym(~x1) { ~x2} that gives the name and parameters of the clause (the sym(~x1) part, i.e., the clause name sym
and the list of parameters ~x1) and the set of local variables used in the body of the clause (the { ~x2} part); and (2) the
clause body that defines when the clause is true. A query is like a clause except it doesn’t have a name or parameters, only
local variables and a body. A body is a series of conjunctions ∧ and disjunctions ∨ of the following: (1) check sym(~x) calls
the given clause with the given arguments (which are all variables), yielding either true or false depending on what that
predicate returns; (2) x1 ≡ x2 tries to unify the values of the given variables, returning true if that is possible, otherwise
false; (3) x1 ./ x2 checks whether the values of x1 and x2 (which are assumed to be numbers) have the given relation;
(4) x← rhs evaluates rhs to a value and binds the result to x; (5) true and false, which have the obvious meanings. Note
that variable values can be numbers or ground terms, but the arithmetic and relational operators only work on numbers.

2.1 Syntax Examples

Here is a mini-prolog progam in user-facing (i.e., Prolog-like) syntax that represents ordered binary trees. ’ ’ is a wildcard
that matches any argument; it is used for convenience when the body of the clause doesn’t need to refer to that argument.
’%’ indicates a comment, which extends to the end of the line.

% allLess/2: Value, List. Ensures that all values in the list are < Value.

allLess(_, []).

allLess(V1, [V2 | Rest]) :-

V2 < V1,

allLess(V1, Rest).

2

% allGreater/2: Value, List. Ensures that all values in the list are > Value.

allGreater(_, []).

allGreater(V1, [V2 | Rest]) :-

V2 > V1,

allGreater(V1, Rest).

% isBST/3: node, LT, GT

% LT - everything the node’s value must be <

% GT - everything the node’s value must be >

isBST(nodenil, _, _).

isBST(node(Value, Left, Right), LT, GT) :-

allLess(Value, LT),

allGreater(Value, GT),

isBST(Left, [Value | LT], GT),

isBST(Right, LT, [Value | GT]).

Here is the same program after translation to the internal syntax. The Tn variables were introduced during the translation
process. Note the absence of built-in lists, pattern-matching, and wildcards.

allLess(T1, T2) {T3} :-

T3 ← nil() ∧
T2 ≡ T3

allLess(V1, T1) {V2, Rest, T2} :-

T2 ← cons(V2, Rest) ∧
T1 ≡ T2 ∧
V2 < V1 ∧
check allLess(V1, Rest)

allGreater(T1, T2) {T3} :-

T3 ← nil() ∧
T2 ≡ T3

allGreater(V1, T1) {V2, Rest, T2} :-

T2 ← cons(V2, Rest) ∧
T1 ≡ T2 ∧
V2 > V1 ∧
check allGreater(V1, Rest)

isBST(T1, T2, T3) {T4} :-

T4 ← nodenil() ∧
T1 ≡ T4

isBST(T1, LT, GT) {Value, Left, Right, T2, T3, T4} :-

T2 ← node(Value, Left, Right) ∧
T1 ≡ T2 ∧
check allLess(Value, LT) ∧
check allGreater(Value, GT) ∧
T3 ← cons(Value, LT) ∧
check isBST(Left, T3, GT) ∧
T4 ← cons(Value, GT) ∧
check isBST(Right, LT, T4)

3

3 Language Implementation

To implement the mini-prolog runtime engine, we need a procedure to take a program (i.e., a list of clauses and a query)
and try to satisfy the query if possible. Section 3.1 describes this procedure using pseudocode. The pseudocode references
several data structures and helper functions which are described in Sections 3.2 and 3.3 respectively.

3.1 Engine Pseudocode

This pseudocode takes a mini-prolog program program and finds a satisfying assignment of query variables to values (if
one exists). When the while loop terminates (if it does), either env is empty, which means there is no solution, or env

maps the query’s variables to satisfying values. If we want to find another satisfying assignment, we can just push false

onto goalStack and re-enter the while loop. If we want to find all solutions, we can repeat this process until there are no
solutions left.

The case for binding (i.e., x← rhs) exploits a property guaranteed by the translator, namely that the variable involved
maps to a placeholder which has not yet been used.

initialize the data structures:

db is the clause database computed from program

env is the initial empty environment

equiv is the initial empty equivalence relation between values

goalStack is the initial empty stack of goals

choiceStack is the initial empty stack of choices

set env to newEnv(program.query.vars, [])

push program.query.body onto goalStack

while goalStack is not empty:

pop the top goal from goalStack

match the goal with one of the following:

case body1 ∧ body2 ⇒
push body2 and then body1 onto goalStack, so body1 is on the top

case body1 ∨ body2 ⇒
push (body2, env, equiv, goalStack) onto choiceStack

push body1 onto goalStack

case x1 ≡ x2 ⇒
look up x1 and x2 in env to get their values v1 and v2
update equiv to unify v1 and v2; if they cannot be unified, push false onto goalStack

case check sym(~x) ⇒
let

−−−−→
clause be the value of db(sym, |~x|), where |~x| is the number of arguments

if
−−−−→
clause is empty, abort execution

else:

push ’restore env’ onto goalStack

look up each argument x in env to get its value v

let clause1 be the first clause in
−−−−→
clause

for each remaining clause clausei from
−−−−→
clause in reverse order:

let envC = newEnv(clausei.localVars, clausei.params zip ~v), where ~v are the argument values

push (clausei.body, envC, equiv, goalStack) onto choiceStack

let envC = newEnv(clause1.localVars, clause1.params zip ~v)
set env to envC

push clause1.body onto goalStack

4

case restore envR ⇒
set env to envR

case x1 ./ x2 ⇒
look up x1 and x2 in env to get their values v1 and v2
if v1 or v2 is not a number, abort execution

else if v1 ./ v2 is false, push false onto goalStack

case x← rhs ⇒
look up x in env to get its value v1
evaluate rhs to get its value v2
set equiv to equiv[v1 7→ v2]

case true ⇒
do nothing

case false ⇒
if choiceStack is empty, set env and goalStack to empty

else:

pop (body, envC, equivC, goalStackC) from choiceStack

set env to envC, equiv to equivC, and goalStack to goalStackC

push body onto goalStack

end while

3.2 Data Structures

The engine uses the following data structures: the clause database, the environment, the equivalence relation, the goal
stack, and the choice stack. Each data structure is described below.

3.2.1 The Clause Database

The clause database is a map from clause names and their arities to a list of matching clauses. It is used when evaluating
a check expression to find the relevant clauses being called. The database is created once at the very beginning and never
changes during program execution. In the internal syntax example from Section 2.1, the clause database would map
allLess/2 to a list of two clauses, allGreater/2 to a list of two clauses, and isBST/3 to a list of two clauses. It is important
that for each (name, arity) entry in the clause database, the relevant clauses are listed in the order that they appear in
the program—this gives the programmer control over the order the clauses are evaluated in.

3.2.2 The Environment

The environment maps variables to values. There are no global variables; all variables are local to a particular clause.
Clauses can be recursive—just as for recursive functions in imperative programs, the local variables for one instance of
the clause are distinct from the local variables of any other instance of that clause. We ensure this by using a different
environment for each clause invocation. The new environments are created when evaluating a check expression; how to
create a new environment for a clause invocation is explained in Section 3.3.2. This is also why we have added the goal
restore env in addition to the regular goals; the restore goal is used to restore the original environment after we’ve finished
evaluating a check expression and don’t need its environment anymore.

Values are either (1) numbers; (2) ground terms; or (3) placeholder values. Ground terms are explained in Section 3.3.3.
Placeholder values are an implementation convenience—it is useful to ensure that variables are always mapped to some
value, even if we don’t know what that value should be. A placeholder value is essentially a dummy value that stands for
some unknown real value (either a number or ground term). When we create new environments, we always map all of
the local variables to placeholder values; this makes binding and unification simple because we don’t have to worry about
special cases that depend on whether a variable has been given a value already or not.

Note that when we look up a variable in the environment to get its value, rather than just return the value directly
we should map that value to its set representative using the equivalence relation on values (as explained in the next
subsection, 3.2.3) and return that set representative.

5

3.2.3 The Equivalence Relation

There are two ways to give variables values: either binding (via ←) or unification (via ≡). Because of the way we’re using
placeholder values, we can implement both very simply by (1) evaluating the left- and right-hand sides to values; and
(2) using unification to try and put those values in the same equivalence class. The process of unification is explained in
Section 3.3.1. Here we simply describe the data structure we use to record equivalence classes.

An equivalence relation is a partition of values into equivalence classes; in other words, it groups values into sets such
that each value is in exactly one set and all values in the same set are equivalent to each other. A given equivalence class
is denoted by its set representative, i.e., a distinguished member of the set that stands for all of the other members. The
equivalence relation data structure is used to find, for each value, what its particular set representative is. This means
that the equivalence relation data structure is a map from values to values; we’ll call that map equiv. It turns out that,
due to the way we implement unification, the values in the domain of the map are always placeholder values. To determine
the set representative of a value v, we do the following:

1. Determine whether v is in the domain of equiv. If not, then v is a set representative and we’re done.

2. If v is in the domain, then get the value that v maps to; call that value v′. Recursively determine the set representative
of v′ by going to step 1.

3.2.4 The Goal Stack

The goal stack keeps track of the remaining things that we need to satisfy in order to find a solution for the program. It
consists mostly of body terms (as defined in the language syntax); the only exception is that we also have a restore goal
that is used to restore environments after calling another clause (as explained above in the environment section).

3.2.5 The Choice Stack

When we call a clause that has more than one definition or we evaluate a disjunction, we must nondeterministically pick
a goal to satisfy among the available choices. However, if we pick the wrong choice, we must be able to backtrack and try
a different choice. The choice stack keeps track of the remaining available choices that we didn’t pick, allowing us to do
that backtracking when necessary. An element of the choice stack is a tuple of (body , environment, equivalence relation,
goal stack). This tuple completely captures the state of the execution when we made our original choice, allowing us to
restore that state if we need to make a new choice.

3.3 Helper Functions

The engine needs helper functions for the following: unifying variables, computing new environments, and evaluating rhs
expressions. Each helper function is described below.

3.3.1 Unification

Unification is a method of determining whether two values are equivalent or not; alternatively, we can view it as a way of
making two values equivalent if possible. The current equivalence relation is maintained in the equivalence relation data
structure equiv, described above in Section 3.2.3. The affect of trying to unify two values is either (1) success, with an
updated equiv; or (2) failure. We can represent these possibilities with an Option type, where None represents failure. The
unification procedure pseudocode is below, where p means a placeholder value:

unify(v1, v2, equiv) =

Some(equiv) if v1 = v2

Some(equiv[p 7→ v2]) if v1 = p

Some(equiv[p 7→ v1]) if v2 = p

unifyTerms(~v3 zip ~v4, equiv) if v1 = sym(~v3), v2 = sym(~v4), |~v3| = |~v4|
None otherwise

6

unifyTerms(
−−−→
pairs, equiv) =

−−−→
pairs.foldLeft(Some(equiv))(fun)

where fun(acc, (v1, v2)) =

acc match {
case None⇒ None

case Some(newEquiv)⇒ unify(v1, v2, newEquiv)

}

3.3.2 New Environments

New environments are constructed whenever we need to call a clause (or at the very beginning of program execution,
when we need to evaluate the program’s query). We will first discuss creating environments for clauses; then creating
environments for queries follows as a special case. Given a clause sym(~x1) { ~x2} :− body that we’re calling along with
a list of values ~v of arguments that we’re passing, the new environment is (~x1 zip ~v) ++ (~x2 zip ~p), where ++ unions two
maps and ~p is a list of fresh placeholder values equal in length to ~x2.

Queries are handled in a similar manner. However, since queries do not take any arguments, the sequences represented
by the variables ~x1 and ~v shown in the above expression are always empty.

3.3.3 Expression Evaluation

Expressions on the right of ← are either numbers n, arithmetic expressions on numbers and number-valued variables exp,
or terms sym(~x). A number evaluates to itself. A binary arithmetic expression is evaluated recursively: evaluate the
left-hand side to a number, the right-hand side to a number, then apply the given operation (+, −, ×, or ÷). These
arithmetic operations are only defined on numbers; if a value used in an arithmetic operation is not a number (or if the
operation is division by zero) then the program execution aborts with an error. Terms are evaluated to ground terms,
which simply means terms that do not contain any variables. To evaluate a term sym(~x), we evaluate each argument x
to its value v and the corresponding ground term value is sym(~v).

7

	Overall Language Design
	Internal Syntax
	Syntax Examples

	Language Implementation
	Engine Pseudocode
	Data Structures
	The Clause Database
	The Environment
	The Equivalence Relation
	The Goal Stack
	The Choice Stack

	Helper Functions
	Unification
	New Environments
	Expression Evaluation

