
Constraint Logic Programming

1 Introduction

Constraint logic programming (CLP) is an extension of logic programming that bakes in additional logic theories as
language primitives. Examples of these theories include: finite domains, integer linear arithmetic, real arithmetic, etc.
Recall that we made logic programming (LP) tractable by restricting ourselves to a fragment of first-order logic; CLP
is a way to regain some expressive power. In practical terms, CLP is LP plus the ability to symbolically reason about
numeric constraints (we could also add theories about other domains, such as strings, sets, and bit-vectors, but most
CLP languages only use numeric domains). Another way to think of “regular” LP is as a kind of CLP where the only
theories are uninterpreted functions (i.e., numbers and ground terms) and equality (i.e., unification); “real” CLP then
adds additional theories to those two. We can think of a CLP engine as two pieces: the LP engine plus a constraint store
that reasons about these additional theories. The LP engine works much like we’ve already seen in miniprolog but slightly
modified to interact with the constraint store, which acts as a black box constraint solver for dealing with constraints
involving the additional theories.

As a simple example to make these ideas more concrete, consider the following scheduling problem: we want to assign
seven meetings to days of the week with the following constraints: (1) certain meetings can’t be on the same day; and
(2) one particular meeting has to come after all other meetings. We will use CLP with the finite domains theory. We
can encode this problem by using one variable for each meeting (we’ll call them x1 through x7) and the finite domain
of values for those variables is the integer interval [0..4] (where 0 stands for Monday, 1 for Tuesday, ..., 4 for Friday).
If any two meetings xa and xb cannot be on the same day, then we add the constraint xa 6= xb. If meeting x1 must
be the last meeting, then we add the constraints x1 > x2, x1 > x3, . . . , x1 > x7. Finally, we ask the CLP engine to
compute a satisfying solution; the resulting values of x1, . . . , x7 represents a valid schedule (and if there are no resulting
values because the problem was unsatisfiable, then there is no valid schedule). In this case, the entire problem is solved
by the constraint store; in more complex problems there would be interactions between the LP part of the engine and the
constraint store part of the engine.

There are certain characteristics that make a problem particularly suited to solving using CLP. While any Turing-
complete programming language can solve any problem that CLP can solve, problems that have these characteristics tend
to have relatively simple, elegant, and efficient solutions in CLP and to have complex, messy, and inefficient solutions in
other languages. The characteristics are:

• No general, efficient algorithms exist (e.g., the problem is NP-complete). Enumerating all solutions is impractical,
instead we need to use some form of efficient search.

• The problem specification has a dynamic component: it should be easy to change programs rapidly to adapt.

• The problem requires some sort of decision procedure. These decision procedures can often be encoded in mathe-
matical formulae and handled by special-purpose solvers.

Examples of problems that have these characteristics include planning, scheduling, resource allocation, logistics, circuit
design and verification, finite state machines, financial decision making, transportation, spatial databases, etc.

2 Finite Domains

There is a huge body of work on efficiently implementing various theories. For this class, we will restrict ourselves to a
fairly näıve implementation of finite domains. In this theory we add to the language a finite set of possible values that can
be assigned to variables, usually represented as integers (of course, these integers can stand for elements of any finite set).
The basic problem is this: we are given (1) a set of variables over some finite domain (in our case, integers within some
bounded range); and (2) a set of constraints on those variables (in our case, the constraints are equalities, disequalities,
and inequalities). Our goal is to find values from that domain for all of the variables such that all of the constraints are

1



satisfied. Here we will discuss at a high level the basic ideas of implementing a constraint solver for finite domains. Later
handouts will discuss specifics of implementing the constraint solver and integrating it with the LP engine to arrive at the
final CLP engine.

2.1 First Try (Intractable)

The simplest approach to this problem is also the worst in terms of performance. We can simply try all possible assignments
of values to variables until we find an assignment that satisfies the constraints. In pseudocode, it would look like this
(where the variables in question are x1 through xn):

for each possible value of x1

for each possible value of x2

...

for each possible value of xn

if the values of x1...xn satisfy the constraints, we’re done

else continue

This brute-force approach is exponentially expensive with respect to the number of variables we need to find values for.
We need to find a better method.

2.2 Second Try (Better)

If we think about the above approach for a bit, we can see that we’re doing a lot of wasted work. In particular, if we’ve
made a choice for variable xk that violates the constraints, then no matter what values we choose for xk+1. . .xn the
constraints are still going to be violated. Consider the example from Section 1. We would start with assigning the value
0 (i.e., Monday) to variable x1; however, the constraints specify that x1 must be the last meeting, i.e., that all of the
other variables must be less than x1. No matter what values we choose for x2. . .x7, the constraints will be violated.
Thus, everything we do in the nested loops that iterate through all possible values of x2. . .x7 is wasted work. The key
optimization is to detect bad choices as early as possible, in order to avoid doing all of that wasted work. Our solution
is to sanity check variables as we assign them values, rather than waiting until after we’ve assigned all of the variables
values and then checking them at the very end:

for each possible value of x1

for each possible value of x2 consistent with x1

...

for each possible value of xn consistent with x1...xn−1

success, return the solution

In the example from Section 1, after choosing the value 0 for x1 we would iterate through all of the possible values for x2

trying to find one that is consistent with x1 = 0 (i.e., that doesn’t violate any of the constraints). Since there is no such
value, we’ll give up and move on to the next possible value for x1 instead of wasting time iterating through all possible
values of the rest of the variables.

2.3 Final Version (Even Better)

The optimized version still has problems. Consider again the example from Section 1, but suppose we changed the
constraints to state only that x1 > x7 rather than stating the x1 must be greater than all of the variables. Then the
optimized algorithm would still iterate through all possible values of x2. . .x6 before giving up, again doing a lot of wasted
work. The problem is that we only do sanity checks against our past choices, not our future choices. We need to be able
to immediately figure out that the choice x1 = 0 is inconsistent with any possible choice for x7, thus avoiding that wasted
work. The solution is called constraint propagation. At the moment we choose a value for some variable xk, we look at
all of the relevant constraints that mention xk and consider what effect that choice has on the other variables involved in
those constraints. In particular, we can cross of possible values for those variables that are inconsistent with the choice we
made for xk (restricting the set of possible values for a variable is called narrowing). If any of the variables are narrowed
to the point that there are no possible values left, then we know that we made a bad choice for xk. In pseudocode:

2



for each variable x, initialize values(x) to the set of all possible values

for each v ∈ values(x1)
narrow values(x1) to v
for each other variable xk, narrow values(xk) based on the new values(x1)
if no variable was narrowed to the empty set then

for each v ∈ values(x2)
narrow values(x2) to v
for each other variable xk, narrow values(xk) based on the new values(x2)
if no variable was narrowed to the empty set then
...

for each v ∈ values(xn)
narrow values(xn) to v
for each other variable xk, narrow values(xk) based on the new values(xn)
if no variable was narrowed to the empty set then

success, return the solution

else undo all changes from this iteration and continue

else undo all changes from this iteration and continue

else undo all changes from this iteration and continue

return failure

Notice that we’re effectively describing a search procedure, much like the one that you’re implementing for miniprolog.
There are some similarities between the implementation of this constraint solver and the implementation of miniprolog.
We will see these in more detail in later handouts that give specifics on the constraint solver implementation.

3


	Introduction
	Finite Domains
	First Try (Intractable)
	Second Try (Better)
	Final Version (Even Better)


