
Under consideration for publication in J. Functional Programming 1

Functional Images

CONAL ELLIOTT
Microsoft Research

One Microsoft Way
Redmond, WA 98052, USA

http://research.microsoft.com/̃ conal

Abstract

There have been many libraries for generating images using functional programming, each
based on its own fixed set of geometric primitives and combinators. In contrast, this paper
addresses the general notion of images, based on a very simple model: functions over
continuous 2D space. Spatial transformations are mappings from 2D space to itself, and
regions are just Boolean-valued images. This basis suffices for giving elegant expression
to a wide range of images, as we illustrate through many examples. The library Pan
embodying these ideas is freely available, and we hope to inspire others to join in the
delightful search for new visual building blocks.

1 Introduction

Many of us have been drawn to functional languages from a sense of beauty of
expression. It is a joy to express our ideas with simplicity and generality and then
compose them in endless variety. Software used to produce visual beauty, on the
other hand, is usually created with imperative languages and generally lacks the
sort of “inner beauty” that we value. When occasionally one gets to combine these
two kinds of beauty, the process, and sometimes the result, is a great pleasure. This
paper describes one such combination in an attempt to share this pleasure and
inspire others to join in the exploration.

Computer-generated images are often constructed from an underlying “geomet-
ric” model, composed of lines, curves, polygons in 2D, or illuminated and textured
curved or polyhedral surfaces in 3D. Just as images are often presentations of geo-
metric models, so also are geometric models often presentations of more specialized
or abstract models, such as text (presented via outline fonts) or financial data
(presented via pie charts).

The distinction between geometry and image, and more generally, between model
and presentation (Elliott, 1999), is very valuable, in that it allows one to concentrate
on the underlying model and rely on a library to take care of presentation. In doing
so, it becomes easier and easier to describe fewer and fewer images, but what about
the general notion of “image”?

Functional languages are particularly good at the model-oriented approach to
image generation, thanks to their excellent support for modularity. There does not,

2 Conal Elliott

however, seem to be much work done in functional programming on supporting
the general notion of images. This oversight is puzzling, because images can be
modeled very naturally as functions from a 2D domain to colors. This formulation is
especially elegant when the 2D domain is continuous, non-rectangular and possibly
of infinite extent. Adding another dimension for (continuous) time is just as easy,
yielding temporally and spatially scalable image-based animation.

We have explored this very simple notion of images as functions in a Haskell
library–a “domain-specific embedded language” (DSEL) (Hudak, 1998)–that we
call Pan. This paper presents the types and operations that make up Pan, and
illustrates their use through a collection of examples. Some of the examples are
synthesized from mathematical descriptions, while others are image-transforming
“filters” that can be applied to photographs or synthetic images. For more exam-
ples, including color and animations, see the example gallery and the web version of
this paper, both available through the Pan web page, where Pan is freely available
for downloading.1

As is often the case with DSELs, some properties of the functional host language
turn out to be quite useful in practice. Firstly, higher-order functions are essential,
since images are functions. Parametric polymorphism allows images whose “pixels”
are of any type at all, with some image operations being polymorphic over pixel
type. Aside from color-valued images, Boolean images can serve as a general notion
of “regions” for image masking or selection, and real-valued images can represent
3D height fields or spatially-varying parameters for color generation. Dually, some
operations are polymorphic in the domain rather than the range type. These oper-
ations might be used to construct “solid textures”, which are used in 3D graphics
to give realistic appearance to simulated clouds, stone and wood. So far, we have
not needed laziness, so a translation to Standard ML should be straightforward and
satisfactory.

For efficiency, Pan is implemented as a compiler. It fuses the code fragments used
in constructing an image as well as the display function itself, performs algebraic
simplification, common-subexpression elimination and code hoisting, and produces
C code, which is then given to an optimizing compiler (Elliott et al., 2001).

The contributions of this paper are as follows:

• We propose a strikingly simple but precise model for resolution-independent
images of any type that fits neatly into modern typed functional languages.

• Within this model, we give precise and simple definitions for a library of useful
image building blocks.

• Through a variety of examples, we demonstrate that the simple model is
capable of producing a range of visually interesting images.

1 See http://research.microsoft.com/̃ conal/pan. For now, running the Pan compiler requires
having the Microsoft C++ compiler.

Functional Images 3

2 What is an image?

Pan’s model of images is simply functions from infinite, continuous 2D space to
colors with partial opacity. (Although the domain space is infinite, some images
are transparent everywhere outside of a bounding region.) One might express the
definition of images as follows:2

type Image = Point → Color — first try

where

type Point = (Float , Float) — Cartesian coords

It is useful, however, to generalize the semantic model of images so that the range
of an image is not necessarily Color , but an arbitrary type. For this reason, Image
is really a type constructor :

type Image c = Point → c

It can also be useful to generalize the domain of images, from points in 2D space
to other types (such as 3D space or points with integer coordinates), but we shall
not exploit that generality in this paper.

Boolean-valued “images” are useful for representing arbitrarily complex spatial
regions (or “point sets”) for complex image masking. This interpretation is just the
usual identification between sets and characteristic functions:

type Region = Image Bool

As a first example, Figure 1 shows an infinitely tall vertical strip of unit width,
vstrip, as defined below.3

vstrip :: Region
vstrip (x , y) = |x | ≤ 1/2

For a slightly more complex example, consider the checkered region shown in
Figure 2. The trick is to take the floor of the pixel coordinates and test whether the
sum is even or odd. Whenever x or y passes an integer value, the parity of x + y

changes.

checker :: Region
checker (x , y) = even (bxc + byc)

2 All definitions in this paper are expressed in Haskell (Jones et al., 1999). We take some small
liberties with notation. As described elsewhere (Elliott et al., 2001), our implementation really
uses “expression types” with names like FloatE instead of Float , in order to optimize and
compile Pan programs into efficient machine code. Operators and functions are overloaded to
work on expression types where necessary, but a few require special names, such as “ == ∗” and
“notE”. The definitions used in this paper could, however, be used directly as a valid but less
efficient implementation. We also use some standard math notation for functions like absolute
value, floor, and square root.

3 Each figure shows an origin-centered finite window onto an infinite image and is annotated
with the width of the window in logical coordinates. For instance, this figure shows the window
[−7/2, 7/2]× [−7/2, 7/2] onto the infinite vstrip image.

4 Conal Elliott

[width = 7]

Fig. 1. vstrip

[width = 7]

Fig. 2. checker

Functional Images 5

[width = 10]

Fig. 3. altRings

Images need not have straight edges and right angles. Figure 3 shows a collection
of concentric black&white rings. The definition is similar to checker , but uses the
distance from the origin to a given point, as computed by distO .

altRings p = even bdistO pc

The distance-to-origin function is also easy to define:

distO (x , y) =
√

x 2 + y2

It is often more convenient to define images using polar coordinates (ρ, θ) rather
than rectangular coordinates (x , y). The following definitions are helpful.

type PolarPoint = (Float , Float)

fromPolar :: Point → PolarPoint
toPolar :: PolarPoint → Point
fromPolar(ρ, θ) = (ρ ∗ cos θ, ρ ∗ sin θ)
toPolar (x , y) = (distO (x , y), atan2 y x)

Figure 4 shows a “polar checkerboard”, defined using polar coordinates. The
integer parameter n determines the number of alternations, and hence is twice the
number of slices. (We will see a simpler definition of polarChecker in Section 7.)

polarChecker :: Int → Region
polarChecker n = checker ◦ sc ◦ toPolar

6 Conal Elliott

[width = 10]

Fig. 4. polarChecker 10

where
sc (ρ, θ) = (ρ, θ ∗ n ′/π)
n ′ = fromInt n

For a different sort of example, the following simple definition describes a version
of the famous Sierpinski Gasket (Figure 5) (Mandelbrot, 1977). This formulation
describes the region as the set of points (x, y) for which byc contains no one-bits
beyond those present in bxc, making this comparison using bitwise or (“.|.”):4

gasket :: Region
gasket (x , y) = bxc .|. byc == bxc

For grey-scale images, we can use as “pixel” values within the real interval [0, 1].
This constraint is not expressible in the type system of our language, but as a
reminder, we introduce the type synonym Frac:

type Frac = Float — In [0, 1]

Figure 6 shows a wavy grey-scale image that shifts smoothly between white (zero)
and black (one) in concentric rings.

wavDist :: Image Frac
wavDist p = (1 + cos (π ∗ distO p)) / 2

4 Thanks to Craig Kaplan for suggesting the use of bitwise or and Sigbjørn Finne for refining the
original definition.

Functional Images 7

[width = 1440]

Fig. 5. gasket

[width = 10]

Fig. 6. wavDist

8 Conal Elliott

3 Colors

Pan colors are quadruples of real numbers in [0, 1], with the first three components
for blue, green, and red (BGR) components, and the last for transparency (“alpha”):

type Color = (Frac, Frac, Frac, Frac) — BGRA

The blue, green, and red components will have alpha multiplied in already, and
so must less be than or equal to alpha (i.e., we are using “pre-multiplied alpha”
(Smith, 1995)). Given this constraint, there is exactly one fully transparent color:

invisible = (0, 0, 0, 0)

We are now in a position to define some familiar (completely opaque) colors:

red = (0, 0, 1, 1)
green = (0, 1, 0, 1)
. . .

It is often useful to linearly interpolate (“lerp”) between colors, to create a smooth
transition through space or time. This is the purpose of lerpC w c1 c2. The first
parameter w is a fraction, indicating the relative weight of the color c1. The weight
assigned to the second color c2 is 1− w :

lerpC :: Frac → Color → Color → Color
lerpC w (b1, g1, r1, a1) (b2, g2, r2, a2) = (h b1 b2, h g1 g2, h r1 r2, h a1 a2)

where
h x1 x2 = w ∗ x1 + (1 − w) ∗ x2

With lerpC , we can define other useful functions, e.g.,

lighten, darken :: Fraction → Color → Color
lightenx c = lerpC x c white
darkenx c = lerpC x c black

It is also easy to extend color interpolation to two dimensions, by making three
applications of linear interpolation–two horizontal and one vertical (or, equivalently,
two vertical and one horizontal). Figure 7 illustrates this operation, and is centered
at (1/2, 1/2) rather than the origin. Black, red, blue and white are the colors in the
four corners. Note the partial application of bilerpC to four arguments, resulting
in an image, which is a function, though one expected to be sampled on a finite
region.

bilerpBRBW = bilerpC black red blue white

bilerpC ::Color → Color → Color → Color → (Frac,Frac) → Color
bilerpC ll lr ul ur (wx ,wy) = lerpC wy (lerpC wx ll lr) (lerpC wx ul ur)

Because of the type invariant on colors, this definition only makes sense if wx and
wy fall in the interval [0, 1].

An operation similar to lerpC is color overlay, which will be used in the next

Functional Images 9

[width = 1]

Fig. 7. bilerpBRBW

section to define image overlay. The result is a blend of the two colors, depending
on the opacity of the top (first) color. A full discussion of this definition can be
found in Smith (1995):

cOver :: Color → Color → Color
cOver (b1, g1, r1, a1) (b2, g2, r2, a2) = (h b1 b2, h g1 g2, h r1 r2, h a1 a2)

where
h x1 x2 = x1 + (1 − a1) ∗ x2

Not surprisingly, color-valued images are of particular interest, so we’ll use a
convenient abbreviation:

type ImageC = Image Color

4 Pointwise lifting

Many image operations result from pointwise application of operations on one or
more values. For example, the overlay of one image on top of another can be defined
in terms of cOver :

over :: ImageC → ImageC → ImageC
(top ‘over ‘ bot) p = top p ‘cOver ‘ bot p

10 Conal Elliott

This commonly arising pattern is supported by a family of “lifting” functionals:5

lift1 :: (a → b) → (p → a) → (p → b)
lift2 :: (a → b → c) → (p → a) → (p → b) → (p → c)
lift3 :: (a → b → c → d) → (p → a) → (p → b) → (p → c) → (p → d). . .

lift1 h f1 p = h (f1 p)
lift2 h f1 f2 p = h (f1 p) (f2 p)
lift3 h f1 f2 f3 p = h (f1 p) (f2 p) (f3 p). . .

Then over = lift2 cOver .
Other examples of pointwise lifting includes selection (cond) and interpolation

(lerpI) between two images:6

cond :: Image Bool → Image c → Image c → Image c
cond = lift3 (λ a b c → if a then b else c)

lerpI ::Image Frac → ImageC →ImageC → ImageC
lerpI = lift3 lerpC

Zero-ary lifting is already provided by Haskell’s const function:

const :: a → (p → a)
const a p = a

Given const , we can define the empty image and give convenient names to several
opaque, constant-color images:

empty = const invisible
whiteI = const white
blackI = const black
redI = const red
. . .

Note that all pointwise-lifted functions are polymorphic over the domain type
(not necessarily Point), and so could work for 1D images (e.g., interpreted as sound),
3D images (sometimes called “solid textures”), or ones over discrete or abstract
domains as well.

Figure 8 shows a simple example of image interpolation based on the examples
in Figures 6, 2, and 4. Since lerpI works on color images, we must first color the
region arguments.

blackWhiteIm, blueYellowIm :: Region → ImageC

5 For intuition, think of p as Point , so that p → a = Image a and similarly for b, c, d . These
lifting functionals special cases of the Haskell monadic lifting functionals, applied to the reader
monad.

6 In a call-by-value language, cond would need to be defined differently, in order to avoid unnec-
essary evaluation.

Functional Images 11

[width = 7]

Fig. 8.
lerpI wavDist(blackWhiteIm (polarChecker 10))

(blueYellowIm checker)

blackWhiteIm reg = cond reg blackI whiteI
blueYellowIm reg = cond reg blueI yellowI

As a simpler example, Figure 9 interpolates between blue and yellow, and will
be useful in several later examples.

ybRings = lerpI wavDist blueI yellowI

5 Spatial Transformations

In computer graphics, spatial transformationss are typically represented by ma-
trices, and hence are restricted to special classes like linear, affine, or projective.
Application of transformations is implemented as a matrix/vector multiplication,
and composition as matrix/matrix multiplication. In fact, this representation is so
common that spatial transformations are often thought of as being matrices. A
simpler and much more general point of view, however, is that they are simply
space-to-space functions.

type Warp = Point → Point

It is then easy to define the familiar affine warps:

type Vector = (Float ,Float)

12 Conal Elliott

[width = 10]

Fig. 9. ybRings

translateP :: Vector → Warp
translateP (dx , dy) (x , y) = (x + dx , y + dy)

scaleP :: Vector → Warp
scaleP (sx , sy) (x , y) = (sx ∗ x , sy ∗ y)

uscaleP :: Float → Warp — uniform
uscaleP s = scaleP (s, s)

rotateP :: Float → Warp
rotateP θ (x , y) = (x ∗ cos θ − y ∗ sin θ,y ∗ cos θ + x ∗ sin θ)

By definition, warps map points to points. Can we “apply” them, in some sense,
to map images into warped images?

applyWarp :: Warp → Image c → Image c

A look at the definitions of the Image and Warp types suggests the following simple
definition:

applyWarp warp im ?= im ◦ warp — wrong

Figure 10 shows a unit disk udisk and the result of udisk ◦ uscaleP 2, where

udisk :: Region
udisk p = distO p < 1

Functional Images 13

[width = 3]

Fig. 10. Disk udisk (left), and udisk ◦ uscaleP 2 (right)

Notice that the uscaleP -composed udisk is half rather than twice the size of udisk .
(Similarly, udisk ◦ translateP (1, 0) moves udisk to the left rather than right.) The
reason is that uscaleP 2 maps input points to be twice as far from the origin, so
points have to start out within 1/2 unit of the origin in order for their scaled
counterparts to be within 1 unit.

In general, to warp an image, we must inversely warp sample points before feeding
them to the image being warped:

applyWarp warp im = im ◦ inverse warp

While this definition is simple and general, it has the serious problem of requiring
inversion of arbitrary spatial mappings. Not only is it sometimes difficult to con-
struct inverses, but also some interesting mappings are many-to-one and hence not
invertible. In fact, from an image-centric point-of-view, we only need the inverses
and not the warps themselves. For these reasons, we simply construct the warps in
inverted form.7 The “wrong” version of applyWarp then becomes right if used with
inverses, so we’ll rename it:

invWarp warp im = im ◦ warp

Because it can be mentally cumbersome always to think of warps as functions
and warp-application as composition, Pan provides a friendly vocabulary of image-
warping functions:

type Filter c = Image c → Image c

translate, scale :: Vector → Filter c
uscale, rotate :: Float → Filter c

7 Easy invertibility is one of the benefits of restricting warps to be affine and represent-
ing them as matrices. A middle ground, offering invertibility and reasonable generality,
would be to represent warps as inverse pairs of functions. Composition could be defined as
compose (f , f ′) (g, g ′) = (f ◦ g, g ′ ◦ f ′).

14 Conal Elliott

[width = 5]

Fig. 11. swirl 1 vstrip

translate(dx , dy) = invWarp (translateP (−dx , −dy))
scale (sx , sy) = invWarp (scaleP (1/sx , 1/sy))
uscale s = invWarp (uscaleP (1/s))
rotate θ = invWarp (rotateP (−θ))

In addition to these familiar affine warps, one can define any other kind of
space-to-space function, limited only by one’s imagination. For instance, here is
a “swirling” warp. It takes each point p and rotates it about the origin by an
amount that depends on the distance from p to the origin. For predictability, this
warp takes a parameter r that gives the distance at which a point is rotated through
a complete circle (2π radians):

swirlP :: Float → Warp
swirlP r p = rotate (distO p ∗ (2 π / r)) p

swirl :: Float → Filter c — Image version
swirl r = invWarp (swirlP (−r))

Applying the swirl effect to vstrip (Figure 1) defined earlier results in an infinite
spiral whose arms thin out away from the origin (Figure 11).

6 Animation

Just as an image is a function of space, an animation is a function of continuous
time.

Functional Images 15

[duration = π, width = 5]

Fig. 12. swirlingVStrip

type Time = Float
type Anim c = Time → Image c

This model is adopted from Fran (Elliott & Hudak, 1997; Elliott, 1999), and leads
to temporal resolution independence, which allows animations to be warped in time
as easily as images are warped in space.

As a simple animation example, let the “swirl factor” in Figure 1 vary with time,
say between -3 and 3 (Figure 12).

swirlingVStrip :: Anim Bool
swirlingVStrip t = swirl (3 ∗ sin t) vstrip

Figure 13 shows what swirl does to the half plane xPos given by x > 0. We
square time to emphasize small and large values of the swirl parameter.

swirlingXPos :: Anim Bool
swirlingXPos t = swirl (t2) xPos

xPos :: Region
xPos (x , y) = x > 0

16 Conal Elliott

[duration = 2, width = 5]

Fig. 13. swirlingXPos

7 Region algebra

Boolean images are useful in many situations, and can be thought of as “regions”
of space. This interpretation is just the usual identification between sets and char-
acteristic functions:

type Region = Image Bool

Set operations are useful and easy to define:

(∩), (∪), xorR, (\) :: Region → Region → Region
compR :: Region → Region
universeR, emptyR :: Region

(∩) = lift2 (∧)
(∪) = lift2 (∨)
xorR = lift1 xor
compR = lift1 not
universeR = const True
emptyR = const False
r \ r ′ = r ∩ compR r ′

Let’s see what we can do with these region operators. First, build an annulus
(Figure 14) out of our unit disk, given an inner radius, by subtracting one disk
from another:

Functional Images 17

[width = 3]

Fig. 14. annulus 0.5

annulus :: Frac → Region
annulus inner = udisk \ uscale inner udisk

Next, make a region consisting of alternating infinite pie wedges (Figure 15),
which is a simplification of Figure 4.

radReg :: IntE → Region
radReg n = test ◦ toPolar

where
test (r , a) = even ba ∗ fromInt n / πc

Putting these two together, we get Figure 16.

wedgeAnnulus :: Float → Int → Region
wedgeAnnulus inner n = annulus inner ∩ radReg n

The xorR operator is useful for creating op art. For instance, Figure 17 is made
from two copies of altRings (Figure 3), shifted in opposite directions and combined
with xorR.

shiftXor :: Float → Filter Bool
shiftXor r reg = reg ′ r ‘xorR‘ reg ′ (−r)

where
reg ′ d = translate (d , 0) reg

Why stop at two copies of altRings? For any given n, the following definition

18 Conal Elliott

[duration = 8, width = 1]

Fig. 15. radReg n for n = 0, . . . , 8

[width = 2.5]

Fig. 16. wedgeAnnulus 0.25 7

Functional Images 19

[width = 10]

Fig. 17. shiftXor 2.6 altRings

distributes n copies of altRings around a circle of radius r and xors them all together
(Figure 18).

xorgon :: Int → Float → Region → Region
xorgon n r = xorRs (map rf [0 .. n − 1])

where
rf i = translate (fromPolar (r , a)) altRings

where
a = fromInt i ∗ 2 ∗ π / fromInt n

The function xorRs does for a list of regions what xorR does for two.

xorRs :: [Region] → Region
xorRs = foldr xorR emptyR

Note also that polarChecker (Figure 4) can be redefined very simply applying
xorR to altRings (Figure 3) and radReg (Figure 15):

polarChecker n = altRings ‘xorR‘ radReg n

Similarly, one could use xorR and a coordinate-swapping filter to redefine checker
(Figure 2) in terms of a region with alternating horizontal or vertical slabs,

One use for regions is to crop a color-valued image:

type FilterC = Filter Color
crop :: Region → FilterC
crop reg im = cond reg im empty

20 Conal Elliott

[width = 7]

Fig. 18. xorgon 8 (7/4) altRings

For instance, Figures 19 and 20 come from cropping ybRings (Figure 9) with
regions produced from wedgeAnnulus (Figure 16) and from a swirled version of
wedgeAnnulus.

8 Tiling

One way to create an infinite image from a finite one (i.e., one transparent outside of
a finite area) is tiling, which is an infinite repitition with displacement and possibly
rotation of a given image. One simple form of tiling is rectangular, in which there
is no rotation, and the displacements are all by (n · w,m · h) for arbitrary integers
n, m and fixed width and height w, h.

For instance Figure 21 shows a tiling of an image kids of size 100 by 117.
The tile image-warping function is defined, as usual, in terms of a Warp-building

function:

tile :: Vector → Filter c
tile size = invWarp (tileP size)

To define tileP , first handle the one-dimensional case, using the functions wrap,
which maps to the range [0, w), and wrap′, which maps to [−w/2, w/2).

wrap, wrap′ :: Float → Float → Float
wrap w x = w ∗ fracPart (x/w)
wrap′w x = wrap w (x + w/2) − w/2
fracPart z = z − bzc

Functional Images 21

[width = 2.5]

Fig. 19. crop (wedgeAnnulus 0.2 5 10) ybRings

[width = 2.5]

Fig. 20.
crop (swirl 2 (wedgeAnnulus 0.25 10)) ybRings

22 Conal Elliott

[width = 450]

Fig. 21. tile (100, 117) kids

Then we can define tiling via two applications of wrap′:

tileP :: Vector → Warp
tileP (w , h) = λ (x , y) → (wrap′ w x , wrap′ h y)

Figure 22 shows a tiling of Figure 7.

tiledBilerp = about (1/2, 1/2) (tile (1, 1)) bilerpBRBW

The higher-order function about takes care of tiling about the point (1/2, 1/2)
instead of (0, 0).

about :: Point → HyperFilter c
about (x , y) filt = translate (x , y) ◦ filt ◦ translate (−x ,−y)

type HyperFilter c = Filter c → Filter c

9 Some polar warps

The swirlP function (from Section 5 and used to define swirl) can be somewhat
simplified by considering points in polar rather than rectangular coordinates.8

8 In polar coordinates, a point p is identified by a pair (ρ, θ), where ρ is the distance from the
origin and θ is the angle between the positive X axis and the ray emanating fm the origin and
passing through p.

Functional Images 23

[width = 3]

Fig. 22. tiledBilerp

swirlP r = polarWarp (λ (ρ, θ) → (ρ, θ + ρ ∗ (2π / r)))

Note that θ changes but ρ does not.
The useful function polarWarp is defined very simply:

polarWarp :: Warp → Warp
polarWarp warp = fromPolar ◦ warp ◦ toPolar

9.1 Turning things inside out

Next, let’s consider a polar warp that changes ρ but not θ. Simply multiplying ρ

by a constant is equivalent to uniform scaling (uscale). However, inverting ρ has a
striking effect (Figure 23):

radInvertP :: Warp
radInvertP = polarWarp (λ (ρ, θ) → (1/ρ, θ))

radInvert :: Filter c
radInvert = invWarp radInvertP

24 Conal Elliott

[width = 2.2]

Fig. 23. radInvert checker

9.2 Radial ripples

As another radial (ρ) warp, we can multiply ρ by an amount that oscillates around
1 with a given magnitude s, having a given number n of periods as θ varies from 0
to 2π. As usual, define an image-warping version as well:9

rippleRadP :: Int → Float → Warp
rippleRadP n s = polarWarp $

λ (ρ, θ) → (ρ ∗ (1 + s ∗ sin (fromInt n ∗ θ)), θ)

rippleRad :: Int → Float → Filter c
rippleRad n s = invWarp (rippleRadP n (−s))

In order to visualize the effect of rippleRad , apply it to ybRings (Figure 9). As
usual, we can use the effect statically or in an animation (Figures 24 and 25).

The examples so far have been infinite in size. We can also make finite ones by
cropping against a region. As a convenience, define cropRad as a function that crops
an image to a disk-shaped region of a given radius:

cropRad :: Float → FilterC
cropRad r = crop (uscale r udisk)

We can crop and then ripple (Figure 26) or ripple and then crop (Figure 27).

9 The “$” operator is infix, right-associative, low-precedence function application. It often reduces
the need for parentheses.

Functional Images 25

[width = 10]

Fig. 24. rippleRad 8 0.3 ybRings

[duration = π, width = 10]

Fig. 25. λt → rippleRad 8 (cos t/2) ybRings

26 Conal Elliott

[width = 15]

Fig. 26. rippleRad 8 0.3 $ cropRad 1 $ ybRings

[width = 15]

Fig. 27. cropRad 1 $ rippleRad 8 0.3 $ ybRings

Functional Images 27

[width = 15]

Fig. 28. swirl 8 $ rippleRad 5 0.3$
cropRad 5 $ ybRings

Now let’s throw in swirling after rippling. Again the result have quite different
looks depending on application order (Figures 29 and 28).10

9.3 Radial waves

For yet another radial warp, let’s do a scale that ripples based on ρ instead of θ. This
time, instead of hardwiring sin into the definition, let’s take a function parameter:

cwaveP :: (Float → Float) → Float → Warp
cwaveP f period = polarWarp warp

where
warp (r , a) = (f (r ∗ (2 π / period)), a)

cwave f r = invWarp (cwaveP f r)

The tan and sin functions yield quite different results. For aesthetics, we also apply
a rotation and circular crop to the sin example (Figures 30 and 31).

10 If we were to swap the order of swirl and cropRad in Figure 28, the results would be disap-
pointing. Why?

28 Conal Elliott

[width = 10]

Fig. 29. swirl 8 $ cropRad 5$
rippleRad 5 0.3 $ ybRings

9.4 The washing machine

Let’s imagine that we’re watching a load of colorful clothes in an agitator-style
washing machine. As the agitator turns in the center, it takes a while for the twisting
motion to radiate outward. The result might look something like Figure 32.

The heart of this example is the warp-constructing function wiggleRotateP , which
takes a number cycles of oscillation cycles per unit from the origin, and a maximum
rotation angle:

wiggleRotateP ::Float → Float → Time →Warp
wiggleRotateP cycles θmax t = polarWarp warp

where
warp (r , a) = (r , a + θmax ∗ sin (t + dt))

where
dt = 2 π ∗ cycles ∗ (r − 1/2)

wiggleRotate ::Float → Float → Time →Filter c
wiggleRotate cycles θmax t = invWarp (wiggleRotateP cycles θmax t)

To form the washer image in Figure 32, take a smoothly colored initial image
tiledBilerp, warp it with wiggleRotate, and crop it with a disk:

washer ::Float → Float → ImageC →Time → ImageC
washer cycles θmax im t = cropRad 1 $ wiggleRotate cycles θmax t $ im

Functional Images 29

[width = 45]

Fig. 30.
uscale 21 udisk ∩
rotate (π/4) (cwave sin 14 checker)

[width = 22]

Fig. 31. cwave tan 10 checker

30 Conal Elliott

[duration = π, width = 2.1]

Fig. 32. washer (1/2) (π/2) 1 tiledBilerp

[width = 22]

Fig. 33. circleLimit 10 (blackWhiteIm checker)

9.5 Circle limits

Figure 33 shows the result of squeezing our infinite checker image into a finite disk.
Note that the spatial warp used is essentially one-dimensional. It just moves a point
closer or further from the origin, based only on its given distance.

circleLimit :: Float → FilterC
circleLimit radius im = cropRad radius (im ◦ polarWarp warp)

where
warp (r , a) = (radius ∗ r/(radius − r), a)

Functional Images 31

[width = 450]

Fig. 34. circleLimit 200 (tile (102, 120) kids)

Tiling and circleLimit go well together, as illustrated in Figure 34. Iterating this
pair of operations results in images like Figure 35.

tileLimit :: Float → Int → FilterC
tileLimit r n = (tile (2.1 ∗ r , 2.1 ∗ r) ◦ circleLimit r)n

where

f 0 x = x
f nx = f n−1 (f x), for n > 0

10 Strange hybrids

Regions are useful for cropping images, as in cropRad above, but also for pointwise
selection, using cond (Section 4). For instance, cond xPos im im ′ looks like im in
its right half-space and like im in its left half-space.

To create more interesting images, warp the basic xPos region before applying
selection. For convenience in constructing examples, let’s define a function to select
between a girl and her cat, based on a given time-varying region:

hybrid :: (Time → Region) → (Time → ImageC)
hybrid f t = cond (f t) fraidy becky

Appendix A describes the embedding of photographic images in our image model.
Figures 36 through 38 show some animations based on a few time-varying regions:

32 Conal Elliott

[width = 450]

Fig. 35. tileLimit 200 2 (tile (105, 105) piggy)

[duration = π, width = 120]

Fig. 36. hybrid turningXPos

turningXPos t = rotate t xPos
swirlingXPost = swirl (10 / sin t) xPos
roamingDisk t = uscale 30 (translate (cos t , sin (2 ∗ t)) udisk)

The cond function produces hard edges between the images being combined. For
a gentler blending, we can shift gradually from one image to the other, using lerpI
(Section 4), if we can construct a space-varying fraction for lerpI ’s first argument.
As a first step, the following continuous function has value 0 for x < −1/2, 1 for
x > 1/2, and grows linearly in-between:

wipe1 :: Float → Frac

Functional Images 33

[duration = π, width = 120]

Fig. 37. hybrid swirlingXPos

[duration = π, width = 120]

Fig. 38. hybrid roamingDisk

wipe1 x = clamp 0 1 (x + 1/2)

clamp :: Float → Float → Float → Float
clamp lo hi z = max lo (min z hi)

To define a continuous counterpart to xPos, we extend wipe1 to 2D and scale by a
given transition width w . Figure 39 shows use of wipe2 with lerpI :

wipe2 :: Float → Image Frac
wipe2 w (x , y) = wipe1 (x/w)

11 Related Work

Peter Henderson began the game of functional geometry for image synthesis (Hen-
derson, 1982). Since then there have been several other such libraries (Lucas &
Zilles, 1987; Zilles et al., 1988; Bartlett, 1991; Arya, 1994; Finne & Jones, 1995;
Elliott & Hudak, 1997). Many or all of these libraries are based on a spatially con-
tinuous model, but unlike Pan, none has addressed the general notion of images.
Similarly for the various “vector-based” 2D APIs and file formats.

34 Conal Elliott

[width = 120]

Fig. 39. lerpI (swirl 10 (wipe2 75)) becky fraidy

Gerard Holzmann developed a system called “Pico”, which consisted of an edi-
tor, a simple language for image transformations, and a machine-code generator for
fast display. His delightful book shows many examples, using photos of Bell Labs
employees (Holzmann, 1988). Pico’s model of images was the discrete rectangu-
lar array of bytes, which could be interpreted as grey-scale values or other scalar
fields. The host language appears to have been very primitive, with essentially no
abstraction mechanisms.

John Maeda’s “Design by Numbers” (DBN) is another language aimed at simpli-
fying image synthesis, sharing with Pan the goals of simplicity and encouragement
of creative exploration (Maeda, 1999). In contrast, the DBN language is squarely in
the imperative style (doing rather than being). Its programs are lists of commands
for outputting dots or line segments and changing internal state, with an image
emerging as the cumulative result. Like Pico, DBN presents a discrete notion of
space, partitioned into a finite array of square pixels.

The Haskell “region server” (Hudak & Jones, 1994) used characteristic functions
to represent regions, in essentially the same formulation as Pan (Section 7). Those
regions were not used for visualization, nor were they generalized to range types
other than Boolean. Paul Hudak also used regions for graphics (Hudak, 2000).
There an algebraic data-type represents regions, but an interpretation (semantics)
is given by translating to a function from 2D space to Booleans.

In his work on evolution for computer graphics, Karl Sims represented images
as Lisp expressions over variables with names x , y , and t (adding z for solid tex-

Functional Images 35

tures) (Sims, 1991). He did not exploit Lisp’s support for higher-order functional
programming for composing image functions.

12 Conclusions

For the purpose of image synthesis, imperative programming languages (including
most object-oriented ones) are unpleasantly “low-level” in the sense of Alan Perlis:
“A programming language is low level when its programs require attention to the
irrelevant.”

This paper presents a simple model and high-level functional programming lan-
guage for images, as functions from continuous 2D space to colors, and then tests
the expressiveness of this model by means of several examples. These examples
represent just a hint at what can be done, and are far from exhaustive, or even nec-
essarily representative. I hope that readers are inspired to apply their own creativity
to generate images and animations that look very different from the examples in
this paper.

13 Acknowledgements

Sigbjørn Finne and Oege de Moor collaborated on the implementation and provided
fruitful discussions. Brian Guenter suggested the project of an image manipulation
language and optimizing compiler and has provided helpful expertise. Koen Classen
provided helpful comments on an earlier draft of this paper.

References

Arya, K. (1994). A functional animation starter-kit. Journal of functional programming,
4(1), 1–18.

Bartlett, J. F. 1991 (May). Don’t fidget with widgets, draw! Tech. rept. 6. DEC Western
Digital Laboratory, 250 University Avenue, Palo Alto, California 94301, US.

Elliott, C. (1999). An embedded modeling language approach to interac-
tive 3D and multimedia animation. IEEE transactions on software engi-
neering, 25(3), 291–308. Special Section: Domain-Specific Languages (DSL).
http://research.microsoft.com/̃ conal/papers/tse-modeled-animation.

Elliott, C., & Hudak, P. 1997 (9–11 June). Functional reactive animation. Pages 263–
273 of: Proceedings of the 1997 ACM SIGPLAN international conference on functional
programming. http://research.microsoft.com/̃ conal/papers/icfp97.ps.

Elliott, C., Finne, S., & de Moor, O. (2001). Compiling embedded lan-
guages. To appear in the Journal of Functional Programming. See
http://research.microsoft.com/̃ conal/papers/saig00 for an earlier version.

Finne, S., & Jones, S. Peyton. 1995 (July). Pictures: A simple structured graphics model.
Glasgow functional programming workshop.

Henderson, P. (1982). Functional geometry. Pages 179–187 of: ACM symposium on LISP
and functional programming.

Holzmann, G. J. (1988). Beyond photography — the digital darkroom. Englewood Cliffs,
New Jersey: Prentice-Hall. (Out of print).

36 Conal Elliott

Hudak, P. (1998). Modular domain specific languages and tools. Pages 134–142 of:
Devanbu, P., & Poulin, J. (eds), Proceedings: Fifth international conference on software
reuse. IEEE Computer Society Press.

Hudak, P. (2000). The Haskell school of expression – learning functional programming
through multimedia. New York: Cambridge University Press.

Hudak, P., & Jones, M. P. (1994). Haskell vs. Ada vs. C++ vs Awk vs . . . an experiment
in software prototyping productivity. Tech. rept. Yale.

Jones, S.L. Peyton, Hughes, R.J.M., Augustsson, L., Barton, D., Boutel, B., Burton, W.,
Fasel, J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M.P., Launchbury,
J., Meijer, E., Peterson, J., Reid, A., Runciman, C., & Wadler, P.L. 1999 (Feb.). Haskell
98: A non-strict, purely functional language. http://haskell.org/definition.

Lucas, P., & Zilles, S. N. 1987 (July 8). Graphics in an applicative context. Tech. rept.
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099.

Maeda, J. (1999). Design by numbers. MIT Press. Foreword by Paola Antonelli.
http://www.maedastudio.com/dbn.

Mandelbrot, B. B. (1977). The fractal geometry of nature. New York: W.H. Freeman &
Company.

Sims, K. (1991). Artificial evolution for computer graphics. ACM computer graphics,
25(4), 319–328. SIGGRAPH ’91 Proceedings.

Smith, A. R. 1995 (July). Image compositing fundamentals. Tech. rept. Technical Memo
#4. Microsoft. http://www.alvyray.com/Memos.

Zilles, S.N., Lucas, P., Linden, T.M., Lotspiech, J.B., & Harbury, A.R. 1988 (December
5–9). The Escher document imaging model. Pages 159–168 of: Proceedings of the ACM
conference on document processing systems (Santa Fe, New Mexico).

A Bitmaps

Image importation must make up two differences between our “image” notion and
the various “bitmap” formats that can be imported.11 Pan images have infinite
domain and are continuous, while bitmaps are finite and discrete arrays, which we
represent as dimensions and a subscripting function:

data Array2 c = Array2 Int Int ((Int , Int) → c)

That is, Array2 n m f represents an array of n columns and m rows, and the valid
arguments (indices) of f are in the range {0, . . . , n− 1} × {0, . . . ,m− 1}.

Rather than creating and storing an actual array of colors (quadruples of floating
point numbers), conversion from the file representation (typically 1, 8, 16, or 24
bits) is done on-the-fly during “subscripting”. The details depend on the particular
format. This flexibility is exactly why we chose to use subscripting functions rather
than a more concrete representation.

The heart of the conversion from bitmaps to images is captured in the reconstruct
function. Sample points outside of the array’s rectangular region are mapped to
the invisible color. Inner points generally do not map to one of the discrete set of
pixel locations, so some kind of filtering is needed. For simplicity with reasonably

11 Somewhat misleadingly, the term “bitmap” is often used to refer not only to monochrome (1-bit)
formats, but to color ones as well.

Functional Images 37

good results, Pan uses bilinear interpolation (bilerp, from Section 3), to performs a
weighted average of the four nearest neighbors. Given any sample point p, find the
four pixels nearest to p and bilerp the four colors, using the position of p relative
to the four pixels. (Note that dx and dy are fractions.)

bilerpArray2 :: ((Int , Int) → Color) → ImageC
bilerpArray2 sub (x , y) =

let
i = bxc; wx = x − fromInt i
j = byc; wy = y − fromInt j

in
bilerp (sub (i , j)) (sub (i + 1, j))

(sub (i , j + 1)) (sub (i + 1, j + 1))
(wx , wy)

Finally, define reconstruction of a bitmap into an infinite extent image. The
reconstructed bitmap will be given by bilerpArray2 inside the array’s spatial region,
and empty (transparent) outside. For convenience, the region is centered at the
origin:

reconstruct :: Array2 Color → ImageC
reconstruct (Array2 w h sub) =

move (− fromInt w / 2, − fromInt h / 2)
(crop (inBounds w h) (bilerpArray2 sub))

The function inBounds takes the array bounds (width w and height h), and
checks whether a point falls within the given array bounds:

inBounds :: Int → Int → Region
inBounds w h (x , y) = 0 ≤ x ∧ x ≤ fromInt (w − 1) ∧

0 ≤ y ∧ y ≤ fromInt (h − 1)

