
Introduction to Logic

1 What is Logic?
The word logic comes from the Greek logos, which can be translated as reason. Logic as a discipline is about studying the fun-
damental principles of how to reason correctly, i.e., making valid arguments (in the sense of making a case for something, not an
acrimonious dispute). In other words, logic tells us, given certain assumptions, what conclusions one can reasonably infer. Consider
the following example (adapted from The Simpsons):

Lisa: By your logic I could claim that this rock keeps tigers away.

Homer: Oh, how does it work?

Lisa: It doesn’t work...it’s just a stupid rock. But I don’t see any tigers around, do you?

Homer: Lisa, I want to buy your rock.

Clearly (and unsurprisingly) Homer is not reasoning correctly. Logic can tell us exactly why his reasoning is incorrect and thus
why Lisa is so exasperated with him. Logic has been studied since ancient times, with schools arising thousands of years ago in
Greece, India, and China. In Europe, logic was strongly influenced by Aristotle all the way up through the 19th century. Logic was
part of the Trivium, and along with grammar and rhetoric formed the foundations of a medieval liberal arts education. Modern formal
logic started taking shape in the mid 1800s due to people like George Boole (boolean algebra), Gottlob Frege (predicate logic), and
many others. An important principle of formal logic is form over content. That is, the rules of logic are about the form that an
argument takes, not the contents of that argument. Consider the following two examples:

Premise: If one is a man then one is mortal

Premise: Socrates is a man

Conclusion: Socrates is mortal

Premise: If x > y then x+1 > y

Premise: 1 > 0

Conclusion: 2 > 0

One example is about the mortality of man, the other is about math. They have completely different content, but the form of both
arguments is the same:

Premise: If A then B

Premise: A

Conclusion: B

This particular form of argument is called modus ponens. In formal logic we only study the forms of arguments and ignore
content. This makes formal logic seem like just a bunch of symbol pushing, devoid of meaning—and that’s exactly what it is! In
fact, that is what makes formal logic so powerful. We can study the correct forms of argument without worrying about what those
arguments are about, which means that logic applies to all kinds of arguments no matter what their subject matter might be. We don’t
need separate logics for studying, e.g., arguments about mortality versus arguments about math.

1.1 Logical Systems
Logic is not one single thing; there are many different systems of logic with different applications. These systems fall into different
categories such as propositional logics, predicate logics, modal logics, etc. Examples of predicate logics include first-order logic,
higher-order logic, many-sorted logic, and infinitary logic. Examples of modal logics include temporal logic (logics of time), alethic
logic (logics of possibility and necessity), deontic logic (logics of obligation and permission), and doxastic logic (logics of belief).
There are many other logical systems that have been developed. For all logical systems there are three desirable properties, though
not all logical systems will have all three:

1

• Consistency. The system cannot be used to prove things that contradict each other, i.e., a consistent system cannot be used to
prove for some proposition A that A is true and that A is not true.

• Soundness. If the system can be used to prove a proposition A, then A is true. In other words, only true things can be proven.

• Completeness. If proposition A is true, then the system can be used to prove A. In other words, all true things can be proven.

Consistency and soundness are generally taken as required in order to have a sensible logical system; when a system cannot have
all three it is completeness that is dropped.

2 Logical Interpretations
The study of logic is about form, not content. However, we do need some way to connect the abstract logical sentences with
meaningful content, or logic would be completely disconnected from reality. This connection is made via an interpretation. Consider
the following definitions:

• Domain of discourse (a.k.a. universe of discourse). A domain of discourse is a set of objects that we are interested in making
arguments about. This set can consist of anything we want: people, numbers, emotions, planets, nations, colors, etc.

• Interpretation. An interpretation maps logical syntax (the symbols used to make logical formulae) to the domain of discourse.
Take the modus ponens example above: from ’If A then B’ and ’A’ we can infer ’B’. We can take the domain of discourse to
be statements about people and states of being and the interpretation would map A to “Socrates is a man” and B to “Socrates
is mortal”. Alternatively, we can take the domain of discourse to be arithmetic expressions and the interpretation would map A
to “1 > 0” and B to “2 > 0”. Both of these interpretations provide different meanings to the same original logical formula.

Based on these definitions, we can now characterize logical sentences (or formulae) as one of the following:

• Valid. A valid formula is guaranteed to be true no matter what interpretation we use. For example, the logical sentence “If A
is true then A is true” is valid.

• Satisfiable. A satisfiable formula has at least one interpretation that makes it true. For example, the logical sentence “A and
B are both true” is satisfiable, but not valid. Under the interpretation A = “triangles have three sides” and B = “squares have
four sides”, the sentence is true. Under the interpretation A = “triangles have four sides” and B = “squares have three sides”
the sentence is not true.

• Unsatisfiable. An unsatisfiable formula has no interpretations that make it true. For example, the sentence “A is true and A is
not true” cannot be true in any interpretation.

In Computer Science we are often more interested in satisfiability than validity. In particular, we often would like to take a given
formula and ask “is this satisfiable?”, and further “given a particular domain of discourse, what specific interpretation satisfies the
formula?”. Finding a satisfying interpretation for a formula is a form of computation.

2.1 More Interpretation Examples
The notions of “domain of discourse” and “interpretation” may be a little difficult to comprehend. Here are some examples to
illustrate the concepts. Take the following sentence in first-order logic:

∀x.p(x, f (x, g))

Here x is a variable, p is a predicate, f is a binary function (i.e., a function taking two arguments), and g is a nullary function (i.e.,
a function taking no arguments, also called a constant). The ∀ symbol is saying that the variable x ranges over all elements of the
domain of discourse. If these concepts are not familiar to you, take a look at the section on first-order logic below where they will
be explained in more detail and then come back. An interpretation will take all of the predicates and functions in a formula and map
them to relations and functions over the given domain of discourse, as in the following examples:

Interpretation 1. We will set the domain of discourse to be people. We will map the predicate p to the relation between people
descendant-of, the function f to the function on people least-common-ancestor (it returns the most closely related person who
is an ancestor of both people given as arguments), and the constant g to the person mary. Then in this interpretation, x is ranging
over the domain of people and the above formula is saying “for all people x, x is a descendant of the least common ancestor of x and
mary”. For convenience, we will assume that everyone has a common ancestor with mary.

2

Interpretation 2. We will set the domain of discourse to be integers. We will map the predicate p to the relation between numbers
< (less than), the function f to the function on numbers + (addition), and the constant g to the number 1. Then in this interpretation,
x is ranging over the domain of integers and the above formula is saying “for all numbers x, x is less than x + 1”.

Interpretation 3. We can have multiple interpretations for the same domain. Again set the domain of discourse to be integers. We
will map the predicate p to the relation between numbers > (greater than), the function f to the function on numbers − (subtraction),
and the constant g to the number 1. Then in this interpretation, x is ranging over the domain of integers and the above formula is
saying “for all numbers x, x is greater than x − 1”.

3 First-Order Logic
One of the most commonly-used systems of logic is first-order predicate logic. The syntax of first-order logic formulae is given
below:

x ∈ Variable f ∈ Function p ∈ Predicate

t ∈ Term ::= x | f (~t)

A, B ∈ Proposition ::= p(~t) | > | ⊥ | A ∧ B | A ∨ B | A ⊃ B | ∀x.A | ∃x.A

In this notation, ~t is a sequence of terms of length equal to the arity of the given function or predicate symbol. When we need
multiple variables we’ll use letters u, v,w, x, y, z. When we need multiple function symbols we’ll use f , g, h, i, j, k. When we need
multiple predicate symbols we’ll use m, n, o, p, q, r, s. When we need multiple propositions we’ll use A, B,C,D, E. As a last resort,
we’ll use subscripts to distinguish names, so that, for example, x1 and x2 indicate different variables.

Arity. Every function and predicate symbol has an arity, which is simply the number of arguments that it accepts. For example, a
function f (u, v) has arity 2 and a function g(u, v,w) has arity 3. We’ll sometimes indicate the arity using notation such as f /2 (for
function symbol f with arity 2) and g/3 (for function symbol g with arity 3). Functions and predicates can have arity 0, in which case
we write them without parentheses. For example, if we have a predicate symbol p/0 we’ll write p instead of p(). Function symbols
with 0 arity are called constants and predicate symbols with 0 arity are called propositional variables.

Function Symbols. Function symbols f , g, etc. stand for functions that map objects to other objects. Of course, without an
interpretation we don’t know what those functions and objects are—an interpretation will include a specific domain of objects and
map each function symbol to a function over that domain. For example, one interpretation might specify that the objects are people,
and connect the function symbol fatherOf /1 with the function that takes a person and returns that person’s father, e.g., fatherOf (Mary)
= John. Terms, which as indicated above are made up of variables and functions over terms, are just names for objects in some
unknown domain. They don’t have any inherent meaning until we give them an interpretation, which will provide a specific domain
of objects. Different interpretations may give them different meanings.

Predicate Symbols. Predicate symbols p, q, etc. stand for relations between objects. Recall that a relation is a set of tuples. For
example, we might define the relation {(grass, green), (sky, blue), (apple, red)}. Again, without an interpretation we don’t know
what the relations or objects are; an interpretation will map each predicate symbol to a specific relation over the domain of objects
for that interpretation. For example, one interpretation might map the predicate symbol color/2 to the relation defined above.

Example Terms: (denoting some object in a domain)

• x
• f (c, g(a, b))
• f (g(h(x, y), i, j(x, z)), h(y, z))

Terminology note: a ground term is a term that does not contain any variables. Of the three examples above, only the second one is
a ground term.

3

Example Propositions: (having a truth value of true or false)

• ∀x.(q(x) ∨ ¬p(x))
• ∃x.q(x, f (x), g) ∧ s(x) ⊃ ∀x.r(h, x)
• ∀x∃y.(r(x, y) ⊃ r(y, x))

3.1 Informal Meaning of First-Order Logic
Now we will informally describe the meaning of the logical connectives being used in first-order logic formulae, i.e., ∧, ∨, ⊃, ∀, and
∃. We will give a precise, formal description of these connectives in the section below about natural deduction; the intent here is
simply to provide some intuition. You may notice that we have not included a logical connective that is often used in first-order logic:
¬, i.e., negation. Rather than defining negation directly, we will assume that a negated proposition ¬A is actually an abbreviation
for the formula A ⊃ ⊥. This will work out to give exactly the same semantics for negation that we would have defined directly, but
simplifies the description of the first-order logic system.

A proposition is a logical statement with a truth value; that is, the statement can be either true or false. The statement “2+2 = 4”
is a proposition (as is the statement “2+2 = 5”). The expression > (pronounced top or true) is the proposition that is trivially true;
the expression ⊥ (pronounced bottom or false or absurd) is the proposition that is trivially false. A predicate p(~t) (e.g., the predicate
color(sky, purple)) stands for some relation over the domain of discourse. Without an interpretation its truth value depends
solely on what assumptions we might have already made (this notion will be made more precise in the section on natural deduction).
The logical connectives, then, are ways to combine propositions together into a new proposition:

• A ∧ B, pronounced “A and B”. This form of proposition is called a conjunction; the propositions A and B are the conjuncts.
The proposition A ∧ B is true iff (if and only if) both proposition A is true and proposition B is true; otherwise it is false.

• A ∨ B, pronounced “A or B”. This form of proposition is called a disjunction; the propositions A and B are the disjuncts. The
proposition A ∨ B is true iff at least one of proposition A and proposition B are true, i.e., either A is true, B is true, or both are
true. Otherwise it is false.

• A ⊃ B, pronounced “A implies B”. This form of proposition is called an implication; the proposition A is called the antecedent
and the proposition B is called the succedent. The proposition A ⊃ B is true iff whenever proposition A is true, proposition B is
necessarily true as well. In other words, A cannot be true unless B is also true (though the reverse does not necessarily hold).

• ∀x . A, pronounced “for all x, A”. This form of proposition is called universal quantification; the ∀ symabol is called the
universal quantifier. Typically the proposition A will mention the variable x, otherwise there is no point in having the quantifier.
The variable x ranges over the entire (unspecified) domain of discourse, so, e.g., the proposition ∀x . p(x) means that the
predicate p is true for all elements in the domain of discourse.

Another way to think about the universal quantifier is in terms of conjunction. If we label the elements of the (unspecified)
domain of discourse d1, d2, . . . , dn then we can think of the proposition ∀x . p(x) as the proposition p(d1) ∧ p(d2) ∧ . . . ∧ p(dn).

• ∃x . A, pronounced “there exists x such that A”. This form of proposition is called existential quantification; the ∃ symabol is
called the existential quantifier. Typically the proposition A will mention the variable x, otherwise there is no point in having the
quantifier. The variable x represents some element of the (unspecified) domain of discourse, so, e.g., the proposition ∃x . p(x)
means that the predicate p is true for at least one element in the domain of discourse.

Another way to think about the existential quantifier is in terms of disjunction. If we label the elements of the (unspecified)
domain of discourse d1, d2, . . . , dn then we can think of the proposition ∃x . p(x) as the proposition p(d1) ∨ p(d2) ∨ . . . ∨ p(dn).

3.2 What Does “First-Order” Mean?
The term first-order in “first-order logic” refers to the fact that we are restricted to quantifying over the objects in a domain of
discourse. That is, a variable x in a proposition will always refer to some object. In higher-order logics we are also allowed to
quantify over predicates and functions, which means that a variable x may refer to some relation or function over objects in the
domain, not just objects themselves. Here is a small example:

∀x . x(foo) ⊃ x(bar)

In this proposition, x is ranging over unary predicates. The proposition states that for any predicate x, if x is true of constant foo
then it is also true of constant bar. We cannot make this statement in first-order logic because we are not allowed to quantify over
predicates in this fashion. Higher-order logic is strictly more powerful than first-order logic.

4

4 Natural Deduction
There are several ways to formally define first-order logic. In Computer Science most people are introduced to it via the Hilbert-style
axiomatic formulation; in philosophy most people learn it via the Natural Deduction formulation. There are also other formulations
possible, such as the sequent calculus. These all define the same thing, they just provide different perspectives and different ways of
getting to the same end. For reasons that will become clear later in the course, we’ll use the natural deduction style.

The fundamental notion of natural deduction is a judgement on the truth of a proposition based on evidence. A proposition is
something that can be either true or false, e.g., “it is raining”. A judgement says whether a proposition is true based on some evidence
(e.g., observation, or a derivation from known facts). For example, we could have the proposition “it is raining” and the judgement
“the proposition ’it is raining’ is true”, based on the evidence that I can see it raining. Propositions are given as formulae in the syntax
of first-order logic.

4.1 Making Judgements
Given a proposition, we want to be able to make a judgement about it. There are a number of different kinds of judgements that we
could make, but we’ll focus on one of the most important: truth. We make judgements based on evidence. Some evidence will be
given to us as facts (i.e., axioms). Other evidence will come from derivations based on inference rules. These rules give us guidelines
for how to make new judgements based on existing judgements. Judgements will often make use of hypotheses, i.e., propositions
that we will temporarily assume are true while trying to make the judgement. A hypothesis is just a sequence of propositions; we
will symbolize arbitrary hypotheses using the Greek letters Γ and ∆.

A judgement will be of the form ’Γ ` A’; this says that if we assume the propositions contained in Γ are true, then we are justified
in saying that proposition A is true. For example, we can make the judgement ’A, B ` A ∧ B’, i.e., “if we assume that proposition A
is true and proposition B is true, then we can infer that proposition A ∧ B is true”.

4.2 Axioms
For classical first-order logic there are two axioms, i.e., judgements that we accept as true without further evidence:

• Γ, A ` A, i.e., we always know that under the assumption that A is true, we can conclude that A is true. The notation ’Γ, A’
means that we’re appending the proposition A to the list of propositions Γ.

• Γ ` A ∨ ¬A, i.e., the law of the excluded middle: it is always true, under any set of assumptions (including the empty set), that
either A is true or ¬A is true.

Note that we could equivalently replace the law of the excluded middle with the law of double negation: Γ ` ¬¬A ⊃ A. It turns
out that given either axiom we can infer the other, so it doesn’t matter which one we take as fundamental. If we remove this second
axiom (in either form), then instead of classical first-order logic we have what is known as intuitionistic first-order logic. This is a
deep philosophical choice with many implications, which we will discuss further in the section below on intuitionistic logic.

4.3 Inference Rules
Inference rules are just a compact way of writing if..then statements. They consist of a horizontal line with zero or more judge-
ments on top of the line, called premises, and exactly one judgement on the bottom of the line, called the conclusion. An inference
rule is saying that if all of the premises can be proven true, then the conclusion must also be true. Each inference rule will also have
a name, given immediately to the right of the horizontal line.

For each logical connective ∧,∨,⊃,∀,∃ there are rules that tell us how we can use them to make judgements. We don’t include
¬ as a logical connective; we could, but it’s easier to just say that ¬A is shorthand for writing A ⊃ ⊥. Each connective has an
introduction rule that shows how we can judge that a proposition using that connective is true (i.e., the connective is used in the
conclusion judgement). Each connective has an elimination rule that shows how we can judge that a proposition is true based on
knowing some other proposition using that connective is true (i.e., the connective is used in one of the premise judgements). The
rules below mention assumptions Γ, but they don’t specify or use the contents of Γ; it is there only to make clear that the rules are
valid no matter what assumptions we’re making.

If you are having trouble understanding these inference rules, refer back to the informal description of these operators in the
section on informal meaning of first-order logic. Having a conceptual understanding of what the connectives mean should help in
understanding the formal definitions below.

5

Logical Connective Introduction Rule Elimination Rule

Conjunction (∧)
Γ ` A Γ ` B

Γ ` A ∧ B
(∧I)

Γ ` A ∧ B
Γ ` A

(∧E1)

Γ ` A ∧ B
Γ ` B

(∧E2)

Disjunction (∨)

Γ ` A
Γ ` A ∨ B

(∨I1)
Γ ` A ∨ B Γ, A ` C Γ, B ` C

Γ ` C
(∨E)

Γ ` B
Γ ` A ∨ B

(∨I2)

Implication (⊃)
Γ, A ` B

Γ ` A ⊃ B
(⊃I) Γ ` A ⊃ B Γ ` A

Γ ` B
(⊃E)

Universal Quantification (∀)
Γ ` A[x 7→ k] k fresh

Γ ` ∀x.A
(∀I) Γ ` ∀x.A

Γ ` A[x 7→ t]
(∀E)

Existential Quantification (∃)
Γ ` A[x 7→ t]

Γ ` ∃x.A
(∃I)

Γ ` ∃x.A Γ, A[x 7→ k] ` B k fresh
Γ ` B

(∃E)

Conjunction. The introduction rule ∧I states that if we know A is true under some set of assumptions Γ and we know B is true
under the same set of assumptions Γ, then we can also conclude A ∧ B is true under that same set of assumptions. There are two
elimination rules; they state that if we know A ∧ B is true under some set of assumptions Γ then we can conclude both that A is true
(using the first rule ∧E1) and that B is true (using the second rule ∧E2) under the same set of assumptions Γ. Constantly mentioning
the assumptions Γ is tedious, so we’ll often ignore them in the explanations below, but for all of the inference rules the assumptions
used in the premises and conclusions must match up for the rule to be used.

Notice how the introduction and elimination rules are duals of each other. The introduction rule takes two pieces of information
(the truth of A and B) and packages them up into a single piece of information (the truth of A∧B). The elimination rules take a single
piece of information (the truth of A ∧ B) and extract from it two pieces of information (the truth of A and the truth of B). There is a
principle of conservation of information here: information is neither lost nor destroyed when using the introduction and elimination
rules. A similar observation will hold for all of the other connectives.

Disjunction. The introduction rules state that if we know A is true then we can conclude that A ∨ B is true (using the first rule ∨I1)
and that if we know B is true then we can also conclude A ∨ B is true (using the second rule ∨I2). Notice that we conclude the same
thing in either case; thus simply knowing A ∨ B is true does not give us any information about which of A or B was true.

The elimination rule ∨E shows how to use the fact A ∨ B is true without knowing which one of A or B was actually true. The
first premise states that we know A ∨ B. The second premise states that if we assume A is true, we can infer some new proposition
C. The third premise states that if we assume B is true, we can infer that same new proposition C. The elimination rule, then, states
that if we know A ∨ B is true, and we know that if A is true then C is true and also that if B is true then C is true, then we can safely
conclude C is true without knowing which of A or B was actually true.

Implication. The introduction rule states that if by assuming A is true we can infer B is true, then we can conclude that A ⊃ B is
true. The elimination rule states that if we know A ⊃ B is true and we can infer A is true, then we can conclude that B is true.

6

Universal Quantification. We assume that proposition A mentions variable x, otherwise we can trivially remove the quantification
and leave A by itself. The notation ’A[x 7→ k]’ means to return a new version of A such that all mentions of variable x are replaced
by k, e.g., (f (x) ∧ g(x))[x 7→ h] would result in f (h) ∧ g(h). The term fresh means that the constant k has never been used anywhere
in the current proof, so this is the first time in the current proof that k has been mentioned.

The introduction rule states that if we can infer A[x 7→ k] is true for some fresh (i.e., never-seen-before) constant k, then we can
conclude that ∀x . A is true. The reasoning behind this rule is that if k is a fresh constant that we’ve never seen before, then we know
nothing about it, which means that it could represent any object in the domain of discourse. If we can prove that A[x 7→ k] is true,
and k can represent any object in the domain, then A must be true no matter what domain object we substitute for x. Therefore, A
must be true for all objects in the domain, which is represented as ∀x . A.

The elimination rule states that if ∀x . A is true, then we can conclude A[x 7→ t] is true for any arbitrary term t. Recall that terms
specify objects in the domain of discourse; if A is true for all objects, then it is true for any one object.

Existential Quantification. Again we assume that A mentions variable x. The introduction rule states that if we know A[x 7→ t] is
true for some term t, then we can conclude that ∃x . A is true. The reasoning is that we have shown t makes A true, and thus we have
demonstrated that there is at least one object in the domain of discourse that makes A true.

The elimination rule states that if ∃x . A is true and, by assuming A[x 7→ k] for some fresh constant k we can infer that B is true,
then we can conclude that B is true. The reasoning is similar to that of the disjunction elimination rule—we know that there is some
object that makes A true, but we don’t know which object. Therefore we select a fresh constant k that can represent any object (as
discussed in the introduction rule for universal quantification ∀I), assume A is true for that object, and attempt to infer B. If we are
successful, then we know that it doesn’t matter which object satisfies A, we can safely conclude B.

4.4 Proof Examples
Here we give several examples of how to prove a judgement about a given proposition. Note in the following proofs that the desired
conclusion is at the bottom of the proof. We can think of these proofs as derivation trees rooted in the conclusion, growing upwards
according to the appropriate introduction and elimination rules. The leaves of the tree are judgements that are trivially true; in this
case, they are all of the form Γ, A ` A.

4.4.1 Example 1

We will prove the following judgement: ` p ∧ q ⊃ q ∧ p.

p ∧ q ` p ∧ q
p ∧ q ` q

∧E1
p ∧ q ` p ∧ q

p ∧ q ` p
∧E2

p ∧ q ` q ∧ p
∧I

` p ∧ q ⊃ q ∧ p
⊃I

4.4.2 Example 2

We will prove the following judgement: ` p ⊃ (q ⊃ (p ∧ q)).

p, q ` p p, q ` q
p, q ` p ∧ q

∧I

p ` q ⊃ (p ∧ q)
⊃I

` p ⊃ (q ⊃ (p ∧ q))
⊃I

4.4.3 Example 3

We will prove the following judgement: ` (p ⊃ q) ∧ (p ⊃ r) ⊃ (p ⊃ (q ∧ r)). In the following proof, in order to fit the proof on the
page we will abbreviate the assumption (p ⊃ q) ∧ (p ⊃ r), p as Γ.

Γ ` p
Γ ` (p ⊃ q) ∧ (p ⊃ r)

Γ ` p ⊃ q
∧E2

Γ ` q
⊃E

Γ ` p
Γ ` (p ⊃ q) ∧ (p ⊃ r)

Γ ` p ⊃ r
∧E1

Γ ` r
(p ⊃ q) ∧ (p ⊃ r), p ` q ∧ r

∧I

(p ⊃ q) ∧ (p ⊃ r) ` p ⊃ (q ∧ r)
⊃I

` (p ⊃ q) ∧ (p ⊃ r) ⊃ (p ⊃ (q ∧ r))
⊃I

7

4.4.4 Example 4

In this example we will illustrate the importance of using a fresh k in the universal quantification introduction rule by giving an
incorrect proof of the following judgement: ` ∀x∀y.p(x) ⊃ p(y). This judgement is obviously wrong; the proof will be incorrect
because it fails to properly use a fresh k.

p(k) ` p(k)
p(k) ` ∀x.p(x)

∀I

p(k) ` p(j)
∀E

` p(k) ⊃ p(j)
⊃I

` ∀y.p(k) ⊃ p(y)
∀I

` ∀x∀y.p(x) ⊃ p(y)
∀I

The problem is at the top of the derivation tree, where we used the ∀I rule to turn p(k) into ∀x.p(x). We can’t do that because k isn’t
fresh—it’s used in the hypothesis of the top judgement.

5 Intuitionistic Logic
From one perspective, intuitionistic logic is a small change from classical first-order logic. We simply remove the law of the excluded
middle (Γ ` A ∨ ¬A) and the law of double negation (Γ ` ¬¬A ⊃ A) as axioms. Everything else remains exactly the same. However,
there is a deep philosophical choice being made when we do this.

Intuitionistic logic was developed by Heyting (1898–1980) in order to formalize Brouwer’s program of intuitionism. Brouwer
(1881–1966) believed that mathematics is completely a creation of the human mind, rather than an external reality that we explore.
That is, math is invented, not discovered. Along with this belief comes a new notion of what it means for a mathematical statement
to be true: to prove that a mathematical object exists, one must provide a constructive proof—that is, a method for constructing said
object. This is in contrast to classical mathematics, which allows one to prove something exists by proving that it can’t not exist. The
constructive viewpoint is interesting from a Computer Science perspective because a constructive proof is akin to an algorithm.

If we think in terms of the traditional notions of true and false, intuitionistic logic doesn’t seem to make sense. A proposition
must be either true or false; if it isn’t true then it must be false, and vice-versa. Similarly, if we know that it’s false that a proposition
is false, then the proposition must be true. This reasoning seems like common-sense, and are exactly what the law of the excluded
middle and the law of double negation are stating.

However, intuitionism forces us to think in terms of provability rather than truth, or in other words, something is only true if it
is provable. Consider the famous statement from algorithmic complexity theory P = NP. Clearly this statement is either true or
false. However, we do not have a proof either way—we don’t know whether it is true or false. From an intuitionistic standpoint the
proposition A ∨ ¬A is saying that either we have a proof of A or we have a proof of ¬A; however we have just given an example
where this is not true (and there are many other examples of statements such that we neither have a proof nor a refutation). Thus, the
law of the excluded middle does not universally hold from the standpoint of intuitionistic logic.

Thinking in terms of provability also explains why the law of double negation doesn’t hold. The proposition ¬¬A states that we
have a proof that ¬¬A does not hold. However, this fact does not immediately give us a way to construct A, and therefore we don’t
have a constructive proof that A holds. Thus, there is no intuitionistic law of double negation.

5.1 Intuitionism and Computer Science
Intuitionism and the philosophy of constructive mathematics is not in the mainstream of the modern mathematical community.
However, as hinted at earlier, intuitionism can have a strong impact on Computer Science. For example, as we will see when we
discuss type systems, type theory and intuitionistic logic are, in a very real way, exactly the same thing. Whenever we write code in a
statically-typed language, we are actually proving a theorem in intuitionistic logic, and when we compile that code the type checker
is verifying that our theorem is correct. We will be exploring this connection in-depth during the coming weeks.

8

