
The λ-Calculus

1 Background on Computability
The history of computability stretches back a long ways, but we’ll start here with German mathematician David Hilbert in the
1920s. Hilbert proposed a grand challenge for mathematics called Hilbert’s Program (program in the sense of agenda, not computer
program—computer programs didn’t exist yet). A large part of that challenge was to create an algorithm that, given any mathematical
theorem, could in finite time determine whether that theorem is true or false. This is called the Entscheidungsproblem, or “decision
problem”. It was assumed at the time that naturally such an algorithm existed, it was just a question of finding it. However, this
goal turned out to be provably impossible. The three people most responsible for killing this dream are Kurt Gödel with his
Incompleteness Theorems, Alan Turing with his Turing Machines, and Alonzo Church with his λ-calculus. We’ll focus here on
Turing and Church.

1.1 Alan Turing
Alan Turing was a fellow at King’s College when he became interested in the decision problem. He realized that to formally address
this question, we needed a formal definition of what algorithm meant. Heretofore people had a vague, informal notion that an
algorithm was just a series of mechanical steps, like a recipe—but this notion wasn’t sufficient to address the decision problem.
Turing invented what later came to be known as Turing Machines (he didn’t call them that himself) and defined an algorithm as
anything that can be computed by a Turing Machine. Note that there is no way to prove that algorithms and Turing Machines
coincide, he just made the assertion that they do. However, it turns out to be a very robust definition that is generally accepted by
everyone today. Given this definition, he then proved that there exist problems that cannot be solved by any Turing Machine, e.g.,
the famous Halting Problem. By definition, then, there cannot exist any algorithm to solve those problems; these problems are called
undecidable. It turns out that Hilbert’s decision problem belongs in this class, and thus Hilbert’s Program was doomed. Turing
published this result in 1936.

Historical sidenote: Turing was a prolific researcher and became involved in a number of Computer Science-related problems.
Many people have heard of the Turing Test for Artifical Intelligence, which he invented. Turing was also a significant contributor to
the World War II war effort in Bletchley Park, the nerve center of the Allies’ efforts to break the German secret codes. He was also
gay, and despite his many contributions the British government’s intolerance of his lifestyle led to his early and tragic death.

1.2 Alonzo Church
Alonzo Church was a professor at Princeton around the same time that Turing was a fellow at King’s College. He was not originally
interested in Hilbert’s decision problem; his goal was to redefine the very foundations of mathematics. He wanted to replace sets,
the fundamental building blocks of all mathematics, with functions instead. Unfortunately for him, his students later proved that his
system was inconsistent and thus useless. However, he salvaged part of his system from the wreckage: the λ-calculus. Church then
used the λ-calculus to address Hilbert’s decision problem.

Church also gave a formal definition of “algorithm”, in terms of the λ-calculus, and proved that there exist unsolvable problems
and hence Hilbert’s decision problem was impossible. He actually published his results one month before Turing, but most people
only remember Turing’s paper (history is full of such injustices). Turing later became Church’s graduate student at Princeton. Church
and Turing together proved that the λ-calculus and Turing Machines are, in fact, computationally equivalent: anything that one can
compute, so can the other. Thus, whether we use Turing Machines or the λ-calculus is entirely a matter of taste and convenience. In
complexity theory we usually use Turing Machines; in programming language theory we usually use the λ-calculus. The λ-calculus
is also at the heart of all functional programming languages.

2 Programming Paradigms and Functional Programming
The λ-calculus forms the core of a programming paradigm called functional programming. Programming paradigms (procedural
programming, object-oriented programming, logic programming, functional programming, etc) are different philosophies about how

1

to abstract computation for the programmer. Programming languages exist solely to abstract computation—to present the programmer
with high-level abstractions so that they can think about problems and express solutions in terms of those abstractions, rather than
than forcing them to get into the low-level details of how the underlying machine should operate (e.g., by programming in assembly
language). The differences between these kinds of languages do not lie in what the programmer can do, because they are all equivalent
in computational power. The differences lie in how the programmer expresses computation.

As an example, consider object-oriented programming. The dominant abstraction in an object-oriented programming language
(e.g., C++ and Java) is an object, which encapsulates a set of data and methods. The programmer is encouraged to organize their
solution by thinking about how to break the problem down into distinct kinds of objects arranged in a class hierarchy, based on how
these different kinds of objects relate to each other (is-a, has-a, etc). Roughly, we can think of object-oriented programming as
encouraging the programmer to think in terms of nouns and the relations between nouns. For some problems this is a very convenient
way to think, and classes and textbooks teaching object-oriented programming tend to focus on problems where this is true. However,
not all problems conveniently break down into a static class hierarchy, and for these problems programming in an object-oriented
language can be awkward and difficult.

Functional programming, in contrast, uses functions as the central abstraction. When we say functions we mean mathematical
functions (a mapping from some domain to some co-domain), not the so-called “functions” of languages like C, which are more
properly called procedures. Mathematical functions have the property that a function called with the same arguments will always yield
the same result, which is sometimes called purity or referential transparency in the programming language community. Contrast this
with a C-style “function”, for which it is easy to come up with examples where this property does not hold. Referential transparency
makes reasoning about and testing code much easier than in languages without it, and makes parallel code almost trivial get correct.

In functional programming the programmer is encouraged to organize their solution by thinking about how to break the problem
down into functions and compositions of functions (given functions f and g, the composition f ◦ g is a function that applies g to
an input and then applies f to g’s result in order to get the final result). Functions allow us to decompose a problem into smaller
problems and then glue the respective solutions together (higher-order functions, discussed below, are a critical part of this ability).
Roughly, we can think of functional programming as encouraging the programmer to think in terms of verbs and the composition of
verbs. As with object-oriented programming, for some problems this is a very convenient abstraction and for other problems it is not.

3 Some Intuition for the λ-Calculus
The λ-calculus is all about functions. Consider the function f (x) = x2 + 2x + 1. To determine the value of f (3), we substitute the
argument 3 for the variable x in the body of the function, then reduce until we reach the final answer:

f (3) = 32 + 2 · 3 + 1
= 9 + 2 · 3 + 1
= 9 + 6 + 1
= 15 + 1
= 16

The function has a name, f , but that name is actually superfluous; we could have called it g, bob, or anything else we wanted to and
it would still be the same function. We can simplify the function definition by not giving it a name at all: x 7→ x2 + 2x + 1, i.e., the
function with parameter x that maps to the function body x2 + 2x + 1. This is called an anonymous function, i.e., a function with no
name. Of course, that raises the question of how to call the function if it doesn’t have a name. The syntax for calling anonymous
functions is as follows:

(x 7→ x2 + 2x + 1) 3 = 32 + 2 · 3 + 1
= 9 + 2 · 3 + 1
= 9 + 6 + 1
= 15 + 1
= 16

We simply juxtapose the function we’re calling with its argument. In the previous examples the arguments were all numbers, but that
doesn’t have to be the case—arguments could also be other functions. Consider the integral or differential functions in calculus: they
each take a function as an argument and return a new function as a result (the integral or differential of the argument, respectively).
Functions that take other functions as arguments and/or return functions as results are called higher-order functions.

2

3.1 Environments
When evaluating a function, the act of substituting the argument for the parameter in the body of the function (e.g., substituting 3 for
x in the previous examples) can be very expensive. Evaluating a function can involve multiple substitutions, and each one requires
that the entire function body be iterated over to replace variables with values. Thus, using substitution makes function evaluation have
O(n2) to O(n4) complexity (depending on evaluation order). We can use a simple trick to make the complexity O(n) instead, using
something called an environment. It turns out that substitution also requires some complicated rules to deal with nested functions and
that environments handle nested functions naturally without any extra complexity, so they also simplify evaluation in that way.

An environment is a map from variables to values. When we call a function, rather than substituting the argument for the parameter
inside the function body, instead we add an entry into the environment mapping the parameter to the argument. When evaluating the
function body, whenever we see a variable we look it up in the environment to get its corresponding value. For example:

Function evaluation Environment

(x 7→ x2 + 2x + 1) 3 = x2 + 2x + 1 [x 7→ 3]
= 9 + 2x + 1 [x 7→ 3]
= 9 + 6 + 1 [x 7→ 3]
= 15 + 1 [x 7→ 3]
= 16 [x 7→ 3]

4 Syntax of λ-Calculus
The λ-calculus doesn’t actually contain numbers and arithmetic; it only has functions, nothing else. The syntax of λ-calculus expres-
sions is:

e ∈ Exp ::= x variables
| λx . e function abstraction
| e1 e2 function application

Note that we use λx . e to define functions instead of x 7→ e; they mean the same thing. Why do we use λ? The (possibly apocryphal)
story goes that Church wanted to use the notation x̂ . e taken from Russell and Whitehead’s famous book Principia Mathematica, but
the typesetter couldn’t reproduce the ˆ symbol and so used λ instead.

4.1 Example Expressions
• λ f . λx . x
• λ f . λx . f x
• λ f . λx . f (f x)
• λu . λ f . λx . f ((u f) x)

Often we’ll use the shorthand notation λxy . e to stand for λx . λy . e; using that convention the expressions would look like this:

• λ f x . x
• λ f x . f x
• λ f x . f (f x)
• λu f x . f ((u f) x)

4.2 Abstract Syntax Tree (AST)
Expressions in the λ-calculus can get rather complex and difficult to read. It is often beneficial to rewrite expressions into the form
of abstract syntax trees. These trees reveal the underlying structure of the expressions and make them easier to read. Each subtree
of the AST stands for a subexpression of the entire expression; each node is either a λ (if the subexpression rooted at that node
is a function definition), an ’@’ (if the subexpression rooted at that node is a function application; we use ’@’ because function
application is written using juxtaposition instead of using a special symbol), or a variable (which will always be a leaf node). Here
are some examples:

3

4.2.1 AST for λ f x . f (f x)

λ f

λx

@

@

xf

f

4.2.2 AST for λu f x . f ((u f) x)

λu

λ f

λx

@

@

x@

fu

f

5 Semantics of λ-Calculus
The semantics tells us how to evaluate an expression to a value. For the λ-calculus the only things we have are functions, so
expressions (which are made up of function definitions and function calls) will all evaluate to functions as their final values. We
evaluate a λ-calculus expression exactly the way we did when we talked about evaluating functions using environments. In fact, λ-
calculus expressions are mathematical functions, just using different syntax. There is one thing that we need to be careful of, though,
that comes from the fact that we’re dealing with higher-order functions using environments. The value of a function definition is not
just the function itself, but also the environment that existed when the function was defined. These two things together, the function
and its environment, is called a closure. Consider the following expression:

(λx . (λ f . (λx . f 0) 2) λa . x) 1

4

@

1λx

@

λa

x

λ f

@

2λx

@

0f

Each time we call a function (the ’@’ nodes in the AST) we push a new mapping onto the environment: first x 7→ 1, then
f 7→ λa . x, and finally x 7→ 2. Now consider what happens when we evaluate the function call f 0. We know that f is the function
λa . x, i.e., the function that returns the value of x no matter what argument we pass in. But what is the value of x? It should be 1, the
value of x when we defined the function λa . x, but the current environment when we evaluate the function call maps x to 2 instead.
The only way to remember what the value of x was when we defined the function is to save the environment along with the function,
i.e., a closure. Thus the environment should have f 7→ (λa . x, [x 7→ 1]) instead of just f 7→ λa . x. Then when we evaluate the call
f 0, we look up f in the environment to get the closure and evaluate the closure’s function using the closure’s environment, not the
current environment.

6 Encoding Higher-Level Abstractions
The λ-calculus is elegant in its simplicity, but it isn’t very convenient for actual programming. We can get around this by showing
how to encode higher-level abstractions using the λ-calculus (e.g., numbers, arithmetic, etc) and then building them directly into the
language as a convenience. We’ll end up with the following extended version of the λ-calculus:

x ∈ Variable n ∈ N b ∈ Bool

e ∈ Exp ::= n | b | x | λx . e | e1 e2

| (e1, e2) | fst(e) | snd(e) | inl(e) | inr(e)
| case e1 of inl x⇒ e2 , inr x⇒ e3

Where (e1, e2) builds a pair of values; fst(e) takes a pair and extracts the first value; snd(e) takes a pair and extracts the second value;
inl(e) injects a value into the left side of a union; inr(e) injects a value into the right side of a union; and case e1 of inl x⇒ e2 , inr x⇒
e3 pattern-matches on e1 (which should be a union), evaluating e2 if the union is on the left side and e3 if it’s on the right side. We’ll
also assume that the language has builtin functions on numbers and booleans +,−,×,÷,=, <,∧,∨,¬.

6.1 Arithmetic
We can encode the natural numbers using λ-calculus in a number of ways, but here is a very simple way that lends itself to defining
arithmetic:

0 ∈ N ≡ λsz . z

n ∈ N ≡ λsz . sn z

Where sn z means to apply function s to z a total of n times, e.g., s3 z = s (s (s z)). In this encoding, 0 is a function that takes two
arguments and returns the second one, and any natural number n is the function that takes two arguments and applies the first one to
the second one n times. We can then define arithmetic on natural numbers as follows:

5

succ ≡ λnsz . s (n s z)
add ≡ λmn .m succ n

mul ≡ λmn .m (add n) 0

The successor function succ takes a number and adds 1 to it. The addition function add takes two numbers and returns the sum.
The multiplication function mul takes two numbers and returns the product. These definitions work as we would expect arithmetic to
work because of the way that we have encoded numbers as functions. We could encode subtraction, division, integers, and more in a
similar way.

Historical sidenote: The successor, addition, and multiplication functions were simple to encode, but not all encodings are as
obvious. Church and his students spent a long time trying to figure out how to encode the predecessor function (the function that
substracts 1 from a number), which is needed to define subtraction and division. Finally, Church’s student Kleene went to the dentist
for an operation, and as he was being anesthetized with laughing gas he had a flash of inspiration and figured out the solution.

6.2 Booleans
Booleans are simple to encode:

true ≡ λt f . t

false ≡ λt f . f

The value true is a function that takes two arguments and returns the first one; the value false is a function that takes two arguments
and returns the second one. We can use these encodings to define the standard boolean operators:

and ≡ λab . a b false

or ≡ λab . a true b

not ≡ λa . a false true

6.3 Pairs
So far we’ve encoded primitive values (numbers and booleans) and operations on those primitive values. Now we’ll show how to
encode data structures, specifically pairs of values:

pair ≡ λxyb . b x y

fst ≡ λp . p true

snd ≡ λp . p false

The pair constructor is a nested function definition that takes three arguments. Giving it two arguments (the values to store in the
pair) results in a function that takes a single argument and applies it to the original two arguments (i.e., x and y). The fst function
takes a pair as an argument and applies it to the function true, while the snd function does the same except applies it to false. Recall
that true is a function that takes two arguments and returns the first one, while false is a function that takes two arguments and returns
the second. Thus, fst will return the first value given to pair while snd will return the second value given to pair.

6.4 Unions
The second data structure we’ll encode is unions of two values. A union is a value that is tagged as being either a left value or a
right value; what “left” and “right” mean is up to how the programmer interprets them. For example, we could return a union value
as the result of a function where a “left” value means the function had an error and the value is an error message, while a “right”
value means the function operated correctly and the value is the function’s result. We create a “left” value using the inl (inject left)
function, and a “right” value using the inr (inject right) function. Think of inl and inr as creating a pair where the first element is true
or false (meaning left or right) and the second element is the actual value:

inl(e) ≡ (true, e)
inr(e) ≡ (false, e)

6

We can pattern-match on unions to determine whether they are “left” or “right” values based on how they are tagged; the case
statement takes a union value and two cases: one is an expression to evaluate if the union is a “left” value, the other is an expression
to evaluate if the union is a “right” value:

case e1 of inl x⇒ e2 , inr x⇒ e3 ≡ fst(e1) ((λx . e2) snd(e)) ((λx . e3) snd(e))

fst(e1) extracts the first element of the union pair, which will be either true or false (recall that they are functions that take two
arguments and return either the first or second one, respectively). The two arguments we pass are the cases for left and right. The first
one calls λx . e2 passing in the second element of the pair (the actual value of the union), and the second one does the same except it
calls λx . e3. So if the union is a “left” value then case will return the result of evaluating e2 on the union’s value, and if the union is
a “right” value then case will return the result of evaluating e3 on the union’s value

6.5 Example Expressions
• (λx . x + x) ((λy . y + 1) 6)
• ((λ f gx . g (f x)) (λy . y + 1) (λz . z ∗ z)) 2
• snd((λx . (snd(x), fst(x))) (1, 2))
• (λz . case z of inl x⇒ x + 1 , inr x⇒ (fst(x) + 1, snd(x) + 1)) inr((λw . (w,w)) 1)

7

