
Types and the Simply-Typed λ-Calculus

1 Background on Type Systems
A type describes a set of related values that all admit the same legal operations, e.g., the type num describes the set of all natural
numbers (which admit the operations +,−,×,÷). When we say that an expression has some type τ, we are saying that when the
expression is evaluated the resulting value will belong to the set described by τ. Here are some examples of common types:

Type Description Example
num natural numbers 42
bool boolean values true

num→ bool functions from numbers to booleans λx :num . x ≤ 42

Types prevent specific kinds of bad behavior in programs. They do this by restricting expressions involving certain operators to
have certain types. For example, if in our language the + operator only works on numbers, then in the expression e1 + e2 the type of
expressions e1 and e2 should both be num. If we can’t prove that e1 and e2 will always evaluate to numbers, then it’s possible when
the program is run that it will try to add two things that aren’t numbers, which doesn’t make sense in our language.

1.1 Terminology and Definitions
There is a lot of confusion surrounding typing and its terminology. People often use the terms incorrectly or inconsistently, which
can make the debates about typing very frustrating. Here we’ll lay out a number of terms and definitions as given in the paper “Type
Systems” by Luca Cardelli, an authority on type systems:

A trapped error makes the program halt immediately and signal the error. For example, division by zero is a trapped error,
as is an array out of bounds access in Java. An untrapped error allows the program to proceed execution without signaling
that anything bad happened. For example, an array out of bounds access in C is an untrapped error. A program is called
safe if it cannot cause any untrapped errors. If we can guarantee that all programs in a certain language are safe, it’s called
a safe language. Sometimes we want to guarantee that programs do not cause certain kinds of trapped errors in addition to
untrapped errors; in this case we define a set of forbidden errors which include all untrapped errors and also some trapped
errors (which ones are included is entirely up to the language designer). A program that cannot cause a forbidden error is called
well-behaved. If we can guarantee that all programs in a certain language are well-behaved, then it’s called a strongly typed
language; otherwise it’s a weakly typed language. Java, Scala, Haskell, and OCaml are examples of strongly typed languages;
C and C++ are examples of weakly typed languages.

Languages can, independently from being strongly or weakly typed, be either statically typed or dynamically typed. In a stati-
cally typed language, we use a type system before a program is actually executed to filter out potentially ill-behaved programs (e.g.,
in a compiler or interpreter right after the program is read in and parsed but before it is compiled or executed). In a dynamically typed
language, we use runtime checks during program execution to detect and reject ill-behaved programs. Essentially, a dynamically
typed language is designed so that all errors are trapped errors. The tradeoffs between statically and dynamically typed languages are
hotly debated in the programming community, with strong (almost fanatic) adherents on both sides.

The Case for Static Typing. A statically typed language can guarantee the absence of entire classes of errors in a program;
potential errors are detected at compile-time rather than lurking undetected only to be found after the code is deployed. Type
annotations serve as code documentation that, unlike programmer comments which are too often missing, inaccurate, or out of
date, are guaranteed to be correct. Finally, type information allows the compiler/interpreter to do a much better job optimizing
the code for better performance; statically typed programs are often many times faster than equivalent dynamically typed
programs. Examples of statically typed languages include C, C++, Java, Scala, Haskell, and OCaml.

1

The Case for Dynamic Typing. A dynamically typed language can be more flexible than a statically typed language because
the programmer does not need to satisfy the type system in order to get running code. This tends to allow much more rapid
development, which can be important in some domains where time-to-market is an important consideration. Dynamically typed
language enthusiasts argue that unit testing is sufficient to detect and prevent the kinds of errors that type systems guard against.
There has also been a lot of research into making dynamically typed languages faster, and though they are still on average much
slower than statically typed languages, the gap is narrowing. Examples of dynamically typed languages include JavaScript,
Python, Ruby, Scheme, and Lisp.

Statically typed languages can also be divided into two camps: explicitly typed and implicitly typed. In an explicitly typed
language the programmer annotates variables in the program with type information, explicitly telling the compiler/interpreter what
the types are. This annotation can be burdensome, especially if we’re using a powerful and expressive type system. In an implicitly
typed language the programmer leaves out all of the type annotations, making the program syntactically look like a dynamically
typed program—but rather than using runtime checks as in a dynamically typed language, the compiler/interpreter automatically
infers the correct type information and checks the program ahead of time. Essentially, the compiler/interpreter inserts an extra step
after parsing but before type checking that automatically adds the type annotations into the program, without the programmer needing
to do anything; this step is called type inference. The more powerful and expressive the type system, the more burdensome the type
annotations and the more convenient it is to have type inference—but the more difficult and expensive type inference can be. C,
C++, and Java are examples of explicitly typed languages; OCaml and Haskell are examples of implicitly typed languages. Scala is
a hybrid of the two: its type system is too powerful to allow for full type inference, but it does perform a local form of type inference
to remove a lot of the type annotation burden.

1.2 A Brief History of Type Systems
The story of type systems starts long before the era of electronic computers and writing programs. Type systems were invented
by Bertrand Russell and Alfred Whitehead in their book Principia Mathematica (“Principles of Mathematics”), written between
1910 to 1913. Russell and Whitehead wrote the Principia Mathematica in an attempt to lay out a formal, logical foundation for all
of mathematics. They were inspired to make this effort by a severe flaw in the underlying theory of mathematics exposed by, for
example, Russell’s Paradox:

Russell’s Paradox: Define a set U as the set containing all sets that do not contain themselves. Is U a member of itself?

• Yes. Then U is a member of itself, and hence by definition cannot be a member of U.
• No. Then U is not a member of itself, and hence by definition must be a member of U.

The question demands a yes or no answer, but we cannot answer either yes or no—thus it is a paradox. There are many other
formulations that all end up with similar difficulties. The fundamental problem exposed by this paradox is that naı̈ve set theory,
previously used to justify mathematical theory, contains contradictions that render that theory useless.

Russell and Whitehead used type systems to disallow the formulation of definitions that lead to paradox. The definition of U
in Russell’s Paradox would, then, be ill-typed and thus not considered a proper definition. Computer scientists in the 1950s and
60s borrowed the theory of type systems from mathematics and applied it to the theory of programming languages that they were
developing at the time. Type systems are still a large and rapidly moving research area in the field of Programming Languages.

1.3 Limits of Type Systems
One way to think of a type system is as a decision procedure, and a type checker is a lightweight theorem prover used to prove
the absence of certain kinds of program behaviors. A natural question to ask is: can a type system reject all ill-behaved programs
while accepting all well-behaved programs? Unfortunately the answer is no; it falls in the same class of undecidable problems that
we discussed in the context of Hilbert’s Entsheidungsproblem. This fact means that any type system which rejects all ill-behaved
programs must necessarily also reject some well-behaved programs. It is impossible to create a type system that exactly distinguishes
between ill-behaved and well-behaved programs.

This result establishes a theoretical limit, but how well do type systems actually do in practice? It turns out that there are a wide
spectrum of type systems that range from very simple (thus efficient to compute, but very limiting) to very complex (thus difficult to
compute, but very expressive). A large part of ongoing programming languages research centers around trying to increase the power
and expressiveness of type systems while still keeping them practical to use.

2

2 Simply-Typed λ-Calculus
We will examine a explicit, strongly typed version of the extended λ-calculus we previously defined.

2.1 Syntax of the Simply-Typed λ-Calculus
x ∈ Variable n ∈ N b ∈ Bool

e ∈ Exp ::= n | b | x | λx :τ . e | e1 e2

| (e1, e2) | fst(e) | snd(e) | inlτ(e) | inrτ(e)
| case e of inl x1 ⇒ e1 , inr x2 ⇒ e2

We are using the lambda calculus extended with natural numbers, booleans, pairs, and unions. Note that inlτ and inrτ are subscripted
with the type of the other side of the union, i.e., the one that isn’t being used. Notice that there are no arithmetic, relational, or logical
operators given in the syntax; for simplicity we’ll assume that they are all given as builtin functions with the appropriate types.

2.2 Types Used in the Simply-Typed λ-Calculus

τ ∈ Type = num | bool | τ1 × τ2 | τ1 + τ2 | τ1 → τ2

We have the primitive (or base) types num and bool, the type of pairs τ1 × τ2 (i.e., a pair whose first element is of type τ1 and whose
second element is of type τ2), the type of unions τ1 + τ2 (i.e., a union whose left value is of type τ1 and whose right value is of type
τ2), and the type of functions τ1 → τ2 (i.e., a function whose parameter is type τ1 and whose return value is type τ2).

2.3 Type Judgements
Given a program in the simply-typed λ-calculus we need some way to determine whether that program is well-typed, i.e., whether
the program is guaranteed to be well-behaved. Being well-typed is a judgement, exactly like we had for first-order logic. Here our
judgements are of the form Γ ` e : τ, meaning “under the set of hypotheses Γ, expression e has type τ”. The hypotheses used in our
judgements are lists of assumptions about the types of variables, e.g., Γ = x1:τ1, x2:τ2, etc. We define a set of inference rules that
allow us to make judgements about expressions in the simply-typed λ-calculus:

Γ, x :τ ` x : τ
(var)

Γ, x :τ1 ` e :τ2

Γ ` λx :τ1 . e : τ1 → τ2
(→ I)

Γ ` e1 :τ1 → τ2 Γ ` e2 :τ1

Γ ` e1 e2 : τ2
(→E)

Γ ` n : num
(nI)

Γ ` b : bool
(bI)

Γ ` e1 :τ1 Γ ` e2 :τ2

Γ ` (e1, e2) : τ1 × τ2
(×I)

Γ ` e :τ1 × τ2

Γ ` fst(e) : τ1
(×E1)

Γ ` e :τ1 × τ2

Γ ` snd(e) : τ2
(×E2)

Γ ` e :τ1

Γ ` inlτ2 (e) : τ1 + τ2
(+I1)

Γ ` e :τ2

Γ ` inrτ1 (e) : τ1 + τ2
(+I2)

Γ ` e :τ1 + τ2 Γ, x1 :τ1 ` e1 :τ3 Γ, x2 :τ2 ` e2 :τ3

Γ ` case e of inl x1 ⇒ e1 , inr x2 ⇒ e2 : τ3
(+E)

3 Curry-Howard Correspondence
Natural deduction is a formal system for expressing proofs, while λ-calculus is a formal system for expressing functions. There is
a powerful connection between these two ideas, called the Curry-Howard Correspondence. The central insight is that an expression
in the λ-calculus is actually a logical proof derivation using natural deduction, and vice-versa. Let Prop be the set of propositional
variables in first-order logic (i.e., the 0-arity predicates) and Prim be the set of primitive types (e.g., num and bool). If we make
these sets equal, then the set of propositional logic formulas is identical to the set of types that can be given to an expression in
λ-calculus. We can extend this correspondance to include quantifiers and all other aspects of first-order logic; in fact, we can even
extend the correspondence to include higher-order logic. This correspondence has been a rich source of ideas for programming
language research.

3

