
Polymorphically-Typed FUN

1 PolyFUN Syntax

x ∈ Variable n ∈ N b ∈ Bool name, cons, fld ∈ Label

prog ∈ Program ::= typedef 1 ... typedef n e

typedef ∈ TypeDef ::= type name[T1 ...Tk] = cons1 :τ1 ... consn :τn

e ∈ Exp ::= x | n | b | nil | (x1 :τ1 ... xn :τn)⇒ e | e f (e1 ... en)
| if e1 e2 e3 | let x = e1 in e2 | rec x :τ = e1 in e2 | [fld1 =e1 ... fldn =en]
| e.fld | cons〈τ1 ... τk〉 e | case e of cons1 x1 ⇒ e1 ... consn xn ⇒ en

| [T1 ...Tk]⇒ e | e〈τ1 ... τk〉

Compared to the SimpleFUN language in handout 4, we have performed the following changes to get the PolyFUN language above:

• Add type polymorphism to variants, which now act like generics. User-defined variant types now include declarations of type
variables which can be used in the constructor types: type name[T1 ...Tk] = cons1 :τ1 ... consn :τn instead of just type name =

cons1 : τ1 ... consn : τn, where types τ1 ... τn can now use the type variables T1 ...Tk. Because of this polymorphism, when we
construct a variant we need to pass in type arguments to replace the type variables, i.e., cons〈τ1 ... τk〉 e instead of just cons e.

• Add type abstraction and type application to get parametric polymorphism. Type abstraction creates a function whose param-
eters are type variables (i.e., [T1 ...Tk] ⇒ e), and type application calls a type abstraction like a function but passes in types to
replace the type variables (i.e., e〈τ1 ... τk〉).

2 PolyFUN Type System
The PolyFUN types are similar to SimpleFUN types with a few changes:

τ ∈ Type = num | bool | unit | (τ1 ... τn)→ τr | [fld1 :τ1 ... fldn :τn] | name〈τ1 ... τk〉 | T | [T1 ...Tk]→ τ

The first five types haven’t changed; the last three are different:

• User-defined variant names are now type constructors rather than types themselves. In other words, name by itself is not a
type—it is a type constructor that takes types as arguments and returns a type as a result: name〈τ1 ... τk〉.

• We now have type variables. These variables are introduced by the type abstractions ([T1 ...Tk] ⇒ e) and by the variant type
declarations (type name[T1 ...Tk] = cons1 :τ1 ... consn :τn).

• Finally, type abstractions yield a polymorphic type, i.e., a type where the type variables can be replaced with any given type to
yield a new type.

The type rules for PolyFUN are exactly like the type rules for SimpleFUN except (1) changes to the tdI and tdE rules to account for
polymorphic variants (recall that the notation z[x 7→ y] means to create a copy of z where every instance of x has been replaced by y):

type name[T1 ...Tk] = ... cons :τ ... ∈ TypeDef Γ ` e :τ[T1 7→τ1 ...Tk 7→τk]
Γ ` cons〈τ1 ... τk〉 e : name〈τ1 ... τk〉

(tdI)

1

Γ ` e : name〈τ1 ... τk〉 type name[T1 ...Tk] = cons1 :τk+1 ... consn :τk+n ∈ TypeDef

Γ, x1 :τk+1[T1 7→τ1 ...Tk 7→τk] ` e1 : τ ... Γ, xn :τk+n[T1 7→τ1 ...Tk 7→τk] ` en : τ
Γ ` case e of cons1 x1 ⇒ e1 ... consn xn ⇒ en : τ

(tdE)

And the addition of tabs and tapp rules to account for parametric polymorphism:

Γ ` e : τ
Γ ` [T1 ...Tk]⇒ e : [T1 ...Tk]→ τ

(tabs)
Γ ` e : [T1 ...Tk]→ τ

Γ ` e〈τ1 ... τk〉 : τ[T1 7→τ1 ...Tk 7→τk]
(tapp)

2

