
CS162: Programming Languages
Winter 2017

Instructor: Kyle Dewey (kyledewey@cs.ucsb.edu)
Teaching Assistants:

• Michael Christensen (mchristensen@cs.ucsb.edu)
• Burak Kadron (kadron@cs.ucsb.edu)

Website: http://cs.ucsb.edu/~kyledewey/cs162/
Lecture: Tuesday / Thursday 5:00 PM - 6:15 PM in Girvetz Hall 2128
Discussion:

Friday 9:00 AM - 9:50 AM in Phelps 2514
Friday 10:00 AM - 10:50 AM in Girvetz Hall 1116

No Course Textbook

Course Description:
Various topics in programming languages, along with their connections to formal logic.
Special emphasis is placed on the following topics:

• First-order logic
• Type systems and typechecking
• Functional programming
• Formal language semantics
• Logic programming

Prerequisites:
• CS130A
• CS138

Graded Components:
Your grade is entirely based on 7 equally weighted programming assignments. To be
clear, there are no exams, no in-class assignments, and attendance is optional both for
lecture and discussion. That said, you are responsible for everything covered in lecture,
and the assignments assume you have been attending lecture. Historically, students
who do not attend lecture have great difficulty with the assignments.

Assignments (subject to change):
• Introduction to Scala
• Functional programming with Functional Images
• Implementing a typechecker for a simply-typed language (SimpleFUN)
• Implementing a typechecker for a polymorphically-typed language (PolyFUN)
• Implementing a small-step interpreter for a functional language (SimpleFUN)
• Introduction to Prolog
• Implementing a small-step interpreter for a subset of Prolog (miniProlog)

mailto:kyledewey@cs.ucsb.edu
mailto:kyledewey@cs.ucsb.edu
mailto:mchristensen@cs.ucsb.edu
mailto:mchristensen@cs.ucsb.edu
mailto:kadron@cs.ucsb.edu
mailto:kadron@cs.ucsb.edu
http://cs.ucsb.edu/~kyledewey/cs162/
http://cs.ucsb.edu/~kyledewey/cs162/

Final Grade Assignment:
The table below describes how final letter grades are assigned in the course. The left
column shows the minimal score necessary to receive the grade in the right column.
The highest letter grade possible given the score is chosen; e.g., if you receive an 88.2,
you’d receive a ‘B+’ for the course, which corresponds to being >= 86.5.

If your score is >=... ...you will receive...

96.5 A+

92.5 A

89.5 A-

86.5 B+

82.5 B

79.5 B-

76.5 C+

72.5 C

69.5 C-

66.5 D+

62.5 D

59.5 D-

0 F
The above cutoffs are strictly enforced; e.g., if you had a 79.4999999, this would be
considered a ‘C+’ as opposed to a ‘B-’, as the cutoff for a ‘B-’ is 79.5. The reasons for
this are twofold:
1. Ultimately, any grading system imparts a cutoff somewhere. Any relaxation

introduces inconsistency, which is unfair.
2. These cutoffs are slightly lower than the typical cutoffs; e.g., the cutoff for an ‘A+’ is

typically 97, not 96.5. As such, the cutoffs used for this class effectively have built-in
rounding.

Grading Errors:
Internally, automated testing is used for a large portion of grading, so it is unlikely that
there has been an error of some sort. Grading errors in this context are usually due to
your code somehow not working correctly with respect to our testing environment, and
will usually lead to bizarre results (e.g., all tests fail). Generally, if you pass the tests we
provided without somehow modifying the mechanism used to run those tests, then you
should not have these sort of problems on our end. However, on rare occasions, this
happens. If you believe such an issue occurred, email us within one week of receiving
your assignment grade. From there, we can double-check.

Regrading:
Each of the assignments allows for regrading, wherein a student may get back up to
1/3 of the points lost on an assignment. For example, if a 70 / 100 was originally
received, a student may get this bumped up to an 80 / 100.

Regrading is applicable if an assignment was turned in and some attempt was made
(e.g., turning in empty files or unmodified template files is not acceptable).

If you want to perform a regrade, you must submit your solution as usual with turnin
within one week of receiving the grade for the assignment. In addition, you must also
email us within one week that you are submitting a regrade.

We will record the grade for your new solution as NewScore. Your final score for the
solution is then determined by the following equation:

FinalScore = OldScore + max(0, (NewScore - OldScore) / 3)

As shown with the above formula, if your new solution performs worse than the old
solution, there is no negative adjustment to your score. That is, it is always in your best
interest to submit a regrade if you did not receive full credit.

Important note about office hours and regrading: historically, office hours tend to get
swamped after an assignment has been returned, due to lots of students asking
questions related to regrading. In the most extreme case, even with 5x the amount of
normal office hours and 2x the support, students would wait up to 45 minutes for an
answer. The underlying problem was that of load balancing - most students went to a
single office hour session near the regrading deadline. As such, it is recommended that
if you are to submit a regrade, that you start early, particularly if you think you will need
extra help. This will help spread resources out in a more efficient manner.

Background Behind Regrading:
Regrading exists to encourage students to revisit assignments that went poorly, in order
to ensure that material is properly learned. This is a good strategy in general, but it is
especially important for multiple assignments in this class which build upon each other,
specifically:

• Scala is used in nearly every assignment, not just the Introduction to Scala
assignment

• Components of your typechecker for SimpleFUN are reused in your typechecker
for PolyFUN

• Both the SimpleFUN and miniProlog assignments share a similar structure
Regrading gives you an opportunity to improve upon an assignment and get additional
feedback on it with practically no risk.

Due Dates / Late Policy:
For items turned in late, each person has 24 hours worth of “grace” time in total. For
example, if someone were to submit the first assignment 4 hours late and the second
assignment 6 hours late, then a total of 10 “grace” hours have been used. Both
submissions would be accepted without incident, and there would be 14 “grace” hours
remaining. Except in extenuating circumstances, submissions for students who have
gone beyond their grace time will not be accepted.
! A little background on this policy - the grace time is intended to be used as a sort
of last-minute “oops” relating to a poor time estimate of (what should be) final touches.
This policy tries to reduce the number of submissions hastily done just to meet a
deadline, and to prevent issues of submissions that missed the deadline by a relatively
small amount of time. It is not intended to be used as a way to extend the deadline for
one assignment for a day, although it certainly can be used that way. Be forewarned:
once it’s gone it’s gone, so use it wisely!

Extenuating Circumstances:
“Extenuating circumstances”, for the purpose of this class, is defined as anything
beyond our immediate control. In these cases, at my discretion I can grant an
extension. To be absolutely clear, there is no guarantee that I will do so, and I am not
obligated to grant them. For the things we can predict (e.g., trips), I expect to be
contacted at least a week in advance. For the things we cannot predict (e.g., illness), I
need official documentation explaining the situation (e.g., a doctor’s note).

Communication Policy:
I have two office hours per week, though I may increase this to 3-4 if questions abound.
I’m also available by appointment.
! With email or Piazza, assume that I will take at least 24 hours to respond.
Typically my response time is much, much faster than this, but I do occasionally take
this long. Historically, this has only been an issue the last hours before an assignment
deadline, and only for students who started far too late. The point being: start early!
! Where possible and appropriate, Piazza should be preferred for communication.
This allows for other students to answer questions, which usually means better
response times for students.

Academic Honesty:
In as few words as possible, cheating and plagiarism will not be tolerated. I understand
that the temptation may be high (“it’s just this one assignment” or “I just need this
class”), but this is no excuse. At the very least, this is unfair to all the students who did
not resort to such unethical means, who instead took the time and struggled through. I
will be following UCSB’s Academic Conduct policy on this (from http://www.sa.ucsb.edu/
Regulations/student_conduct.aspx, under “General Standards of Conduct”), quoted
below for convenience:

It is expected that students attending the University of California understand and
subscribe to the ideal of academic integrity, and are willing to bear individual
responsibility for their work. Any work (written or otherwise) submitted to fulfill an
academic requirement must represent a student’s original work. Any act of academic
dishonesty, such as cheating or plagiarism, will subject a person to University
disciplinary action. Cheating includes, but is not limited to, looking at another student’s
examination, referring to unauthorized notes during an exam, providing answers, having
another person take an exam for you, etc. Representing the words, ideas, or concepts of
another person without appropriate attribution is plagiarism. Whenever another person’s
written work is utilized, whether it be a single phrase or longer, quotation marks must be
used and sources cited. Paraphrasing another’s work, i.e., borrowing the ideas or
concepts and putting them into one’s “own” words, must also be acknowledged.
Although a person’s state of mind and intention will be considered in determining the
University response to an act of academic dishonesty, this in no way lessens the
responsibility of the student.

The first instance of plagiarism is an automatic zero for the assignment, with no
opportunity for regrading. The second instance of plagiarism will result in an ‘F’ for the
entire course.

On Collaboration:
All assignments are individual; there are no assignment partners. That said, it is OK to
discuss ideas with other students, just not code. This means that sharing code is
forbidden, as are discussions of low-level code details (e.g., define a function that takes
these parameters, etc.). To be clear, on our end, it is usually impossible to tell the
difference between cases where code was outright shared and cases where lots of low-
level details were discussed; in both cases the end result is two very similar pieces of
code.
! There is occasionally a gray area here over what is acceptable to discuss or not.
If you are unsure, do not hesitate to privately contact us. In an absolute worst-case
scenario, if you tell us ahead of time to expect similarities between two student
submissions, we will not consider it plagiarism. This means you will not get an
automatic zero, though there may still be a grading penalty.

http://www.sa.ucsb.edu/Regulations/student_conduct.aspx
http://www.sa.ucsb.edu/Regulations/student_conduct.aspx
http://www.sa.ucsb.edu/Regulations/student_conduct.aspx
http://www.sa.ucsb.edu/Regulations/student_conduct.aspx

Seriously, Do Not Take Code, and Protect your Code from Being Taken!
We have an automated mechanism which can detect similarities between code. If the
mechanism flags that two pieces of code are similar, then we will manually inspect them
side-by-side. While it is possible that two codebases are similar by chance, this is rare
in practice, and oftentimes it is obvious when inappropriate collusion has taken place.
! On the other side of the coin, you must protect your code from being stolen.
On CSIL, sometimes your code is publicly available, at least to anyone with access to
CSIL. To guard against your code being taken, run the following command:

chmod 700 cs162

...where cs162 contains your class code (or whatever directory you use). Additionally, if
you use version control, make sure your code is not publicly accessible (as with public
repositories on GitHub). On GitHub, you can get private repositories for free by filling
out https://education.github.com/discount_requests/new, and Bitbucket similarly offers
private repositories. Even if you obfuscate project names, filenames, or directory
structure, it is still trivial to find code with a targeted search.

Historically, code has been taken both from CSIL and from public repositories multiple
times. In general, we cannot figure out who took what from whom, so both parties can
end up being penalized.

https://education.github.com/discount_requests/new
https://education.github.com/discount_requests/new

