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Overview

® Basic Introduction
® CS Accounts

® Scala survival guide
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Office Hour

® Choose an hour from within:

® Tuesday/Thursday || AM - | PM
® Friday | | AM -4 PM

® Also available by appointment
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Google Group

® We have a Google group (162w 14)
® Feel free to discuss, even post test cases

® Pretty much anything CS|62-related that
doesn’t involve sharing code
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Communication Policy

® Assume I'll take 24 hours to respond to any
email

® |'m usually a lot faster than that

® Google group is usually a better resource
® | can still answer it
® Other people can see it

® Someone else may respond faster
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-This is mostly so I’'m not swamped with emails right before a project. It gets ugly.
—-Certain things are obviously directed at me: what is my grade for this? However, much
project help is better fit for the Google group



CS Account

® You will need a CS account

® One can be created at:
https://accounts.engr.ucsb.edu/create/
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https://accounts.engr.ucsb.edu/create/
https://accounts.engr.ucsb.edu/create/

Collaboration

® You may discuss ideas
® |.e.check if the list is sorted
® You may exchange test cases

® |.e. this test fails if your code does not
check if the list is sorted

® All these can be freely posted to the
Google group, too
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Collaboration

® You may nhot exchange or discuss
code

® |.e.this code checks if a list is sorted

® |.e.you need a function that uses three
variables that returns...

® We automatically determine similarity scores
for code via a proven reliable method
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Protect Your Code

® Do not host your code on a public
repository

® Execute chmod 600 filename for
each file in your project (chmod 600
* . scala usually does the trick)

® Otherwise, people can and have taken
other people’s code

® |n general, it is not possible to determine
who stole from who
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—Can get up to 5 free private repositories on GitHub as a student, and private bitbucket

repositories are always free



Discussion / Lecture
Importance

® These are not mandatory, but it is nearly
impossible to do the assighments without
them

® “nearly impossible” means “expect to
take several hours studying the lecture
and discussion notes before you can
implement it”

® |f you cannot make lecture/discussion,
arrange for someone else to take notes for
you
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Assignment Difficulty

® The assignments are intended to be very
difficult and take multiple sittings to do

® |t is ill-advised to do them alone

® |t is even more ill-advised to do them the
night before
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-Your entire grade is based on 7 assignments, so the difficulty needs to come from
somewhere
-Start early!



Assignment Difficulty

® Most of the difficulty will be in figuring out
exactly what needs to be done and how to

do it
® The coding is accidental

® Historically, shorter complete solutions
tend to pass more tests
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-This doesn’t mean the instructions are ambiguous; this means that the concepts are that

new and potentially that difficult to understand



Scala

Friday, January 10, 14



Scala Discussion

® |t’s not possible to cover everything in
these slides in-depth in one section

® This is intended as a strong foundation for
the class assighments

® Examples are on my website
(scala examples.zip)
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VWWhat!

® A non-Java language that runs on the Java
Virtual Machine (JVM)

® Essentially a “better Java”

® Better suited for object-oriented
programming and functional programming
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VWhy

® | ess boilerplate
® More expressive (read: less code)
® Think more, type less

® Clarity
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-1t is not unheard of to spend an hour on several lines of code
-See boilerplate.scala, boilerplate.java



Properties and ldioms

® Everything is an object (unlike Java)
® Emphasis on immutable state

® |n other words, avoid reassighment
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Variable Declaration

® [wo forms:val and var

® val creates a runtime constant, much
like final in Java

® var creates a typical mutable variable

(HIGHLY discouraged and will typically
negatively impact grade)
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-See variables.scala



Method Definition

® Uses the def reserved word
® Everything is public by default

® The result of the last expression in the
function is what is returned - no need for
return (which should be avoided)
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-See method.scala



Type Inferencer

® Can automatically determine the type of
® Variables
® Function return values
® Anonymous function parameters

® Not completely foolproof, but usually
excellent
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-See type_inference.scala



Higher-Order
Functions

® Functions can take other functions as
parameters, or even return functions

® Functions (well, closures) can be created on
the fly

® Note: this is strictly more powerful than
function pointers

® For the JavaScript people: think callbacks
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-See higher_order.scala



Classes

® Created with the c¢class reserved word
® Defaults to public access

® Constructors are not typical
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-See class.scala



Traits

® Created with the trait reserved word

® |ike a mixin in Ruby

® Think Java interfaces, but they can have
methods defined on them

® More powerful than that, but not relevant
to this course
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-See trait.scala



object

® Used in much the same way as static is
in Java

® Defines both a class and a single instance of
that class (and only a single instance)

® Automated implementation of the
Singleton design pattern

® Keeps everything consistently an object
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-See object.scala and object.java



equals,==,and eq

® As with Java, if you want to compare value
equality, you must extend equals

® (Case classes automatically do this for you

® However, instead of saying
x.equals (y),merely say x == vy

® |f you want reference equality, say:
X eq y
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Case Classes

® Behave just like classes, but a number of
things are automatically generated for you

® Including hashCode, equals,and
getters

® Typically used for pattern matching
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—Regular classes can be used in pattern matching as well, but you usually need to put more
effort into it (see the unapply method)

-See case_class.scala



Pattern Matching

® Used extensively in Scala

® like a super-powerful if

® Used with the match reserved word,
followed by a series of cases
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-See pattern_matching.scala



null

® |n general,null is an excellent wonderful/
terrible feature

® Often poorly documented whether or not
null is possible

® Checking for impossible cases

® Not checking for possible cases
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Option

® A solution:encode null as part of a type

® For some type,say Object,if null is

possible say we have a
NullPossible<Object>

® Scala has this, known as Option

® |n general,if null is possible, use Option
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-See option.scala



Tuples

® For when you want to return more than
one thing

® Can be created by putting datums in
parenthesis

® Can pattern match on them
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-See tuples.scala, tuples_revisited.scala



Sequence Processing
Functions

AKA:Why whileis rare and for isn't for




Looping

® Scala has a while loop, but its use is highly
discouraged (again, point loss)

® |t's not actually needed

® General functional programming style is
recursion, but this is usually overkill
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foreach

® Applies a given function to each element of
a oeq
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-See foreach.scala



map

® Like foreach,in that it applies a given
function to each element of a sequence

® However, it also returns a new sequence
that holds the return values of each of the
function calls
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-See MapExample.scala, MapExample.java



filter

® Takes a predicate, i.e. a function that
returns true or false

® Applies the predicate to each item in a list

® A new list is returned that contains all the
items for which the predicate was true
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-See FilterExample.java, FilterExample.scala



foldLeft

® Extremely flexible, but sometimes unwieldy
® TJakes a base element

® TJakes a function that takes a current result
and a current list element

® The function will manipulate result with
respect to the current element
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-See fold.scala, FoldLeftExample.java, FoldLeftExample.scala



flatMap

® Like map, but made especially for functions
that return Seqgs

® Will internally “flatten” all of the inner
Seqgs into a single Seq

® More on this later in the course
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-see flatMap.scala



for Comprehensions

® Much like Python’s list comprehensions

® |nternally translated into a series of
foreach, flatMap,map,and filter

operations
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-See for.scala



Compiling/Running
Code

® Use scalac to compile code
® Use scala to run the code

® scalaand scalac are all on CSIL
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Running the REPL

® Just type scala at the command line

® Pretty nifty to quickly check to see what an
expression does
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Development

® |f you want an IDE, Intelli] IDEA has been
recommended

® Personally,| use emacs and the scala-
mode plugin (needs to be downloaded)
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Assignment |

® Due Tuesday, January 14
® Will need most everything shown here

® Hint hint useful APIs:

® Seg.mkString
® Seg.reverse
® Seg.head

® Seg.tail
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