
CS162 Week 1
Kyle Dewey

Friday, January 10, 14

Overview

• Basic Introduction

• CS Accounts

• Scala survival guide

Friday, January 10, 14

Office Hour

• Choose an hour from within:

• Tuesday/Thursday 11 AM - 1 PM

• Friday 11 AM - 4 PM

• Also available by appointment

Friday, January 10, 14

Google Group

• We have a Google group (162w14)

• Feel free to discuss, even post test cases

• Pretty much anything CS162-related that
doesn’t involve sharing code

Friday, January 10, 14

Communication Policy

• Assume I’ll take 24 hours to respond to any
email

• I’m usually a lot faster than that

• Google group is usually a better resource

• I can still answer it

• Other people can see it

• Someone else may respond faster

Friday, January 10, 14

-This is mostly so I’m not swamped with emails right before a project. It gets ugly.
-Certain things are obviously directed at me: what is my grade for this? However, much
project help is better fit for the Google group

CS Account

• You will need a CS account

• One can be created at:
https://accounts.engr.ucsb.edu/create/

Friday, January 10, 14

https://accounts.engr.ucsb.edu/create/
https://accounts.engr.ucsb.edu/create/

Collaboration

• You may discuss ideas

• I.e. check if the list is sorted

• You may exchange test cases

• I.e. this test fails if your code does not
check if the list is sorted

• All these can be freely posted to the
Google group, too

Friday, January 10, 14

Collaboration

• You may not exchange or discuss
code

• I.e. this code checks if a list is sorted

• I.e. you need a function that uses three
variables that returns...

• We automatically determine similarity scores
for code via a proven reliable method

Friday, January 10, 14

Protect Your Code

• Do not host your code on a public
repository

• Execute chmod 600 filename for
each file in your project (chmod 600
*.scala usually does the trick)

• Otherwise, people can and have taken
other people’s code

• In general, it is not possible to determine
who stole from who

Friday, January 10, 14

-Can get up to 5 free private repositories on GitHub as a student, and private bitbucket
repositories are always free

Discussion / Lecture
Importance

• These are not mandatory, but it is nearly
impossible to do the assignments without
them

• “nearly impossible” means “expect to
take several hours studying the lecture
and discussion notes before you can
implement it”

• If you cannot make lecture/discussion,
arrange for someone else to take notes for
you

Friday, January 10, 14

Assignment Difficulty

• The assignments are intended to be very
difficult and take multiple sittings to do

• It is ill-advised to do them alone

• It is even more ill-advised to do them the
night before

Friday, January 10, 14

-Your entire grade is based on 7 assignments, so the difficulty needs to come from
somewhere
-Start early!

Assignment Difficulty

• Most of the difficulty will be in figuring out
exactly what needs to be done and how to
do it

• The coding is accidental

• Historically, shorter complete solutions
tend to pass more tests

Friday, January 10, 14

-This doesn’t mean the instructions are ambiguous; this means that the concepts are that
new and potentially that difficult to understand

Scala

Friday, January 10, 14

Scala Discussion

• It’s not possible to cover everything in
these slides in-depth in one section

• This is intended as a strong foundation for
the class assignments

• Examples are on my website
(scala_examples.zip)

Friday, January 10, 14

What?

• A non-Java language that runs on the Java
Virtual Machine (JVM)

• Essentially a “better Java”

• Better suited for object-oriented
programming and functional programming

Friday, January 10, 14

Why

• Less boilerplate

• More expressive (read: less code)

• Think more, type less

• Clarity

Friday, January 10, 14

-It is not unheard of to spend an hour on several lines of code
-See boilerplate.scala, boilerplate.java

Properties and Idioms

• Everything is an object (unlike Java)

• Emphasis on immutable state

• In other words, avoid reassignment

Friday, January 10, 14

Variable Declaration

• Two forms: val and var

• val creates a runtime constant, much
like final in Java

• var creates a typical mutable variable
(HIGHLY discouraged and will typically
negatively impact grade)

Friday, January 10, 14

-See variables.scala

Method Definition

• Uses the def reserved word

• Everything is public by default

• The result of the last expression in the
function is what is returned - no need for
return (which should be avoided)

Friday, January 10, 14

-See method.scala

Type Inferencer

• Can automatically determine the type of

• Variables

• Function return values

• Anonymous function parameters

• Not completely foolproof, but usually
excellent

Friday, January 10, 14

-See type_inference.scala

Higher-Order
Functions

• Functions can take other functions as
parameters, or even return functions

• Functions (well, closures) can be created on
the fly

• Note: this is strictly more powerful than
function pointers

• For the JavaScript people: think callbacks

Friday, January 10, 14

-See higher_order.scala

Classes

• Created with the class reserved word

• Defaults to public access

• Constructors are not typical

Friday, January 10, 14

-See class.scala

Traits

• Created with the trait reserved word

• Like a mixin in Ruby

• Think Java interfaces, but they can have
methods defined on them

• More powerful than that, but not relevant
to this course

Friday, January 10, 14

-See trait.scala

object

• Used in much the same way as static is
in Java

• Defines both a class and a single instance of
that class (and only a single instance)

• Automated implementation of the
Singleton design pattern

• Keeps everything consistently an object

Friday, January 10, 14

-See object.scala and object.java

equals, ==, and eq

• As with Java, if you want to compare value
equality, you must extend equals

• Case classes automatically do this for you

• However, instead of saying
x.equals(y), merely say x == y

• If you want reference equality, say:
x eq y

Friday, January 10, 14

Case Classes

• Behave just like classes, but a number of
things are automatically generated for you

• Including hashCode, equals, and
getters

• Typically used for pattern matching

Friday, January 10, 14

-Regular classes can be used in pattern matching as well, but you usually need to put more
effort into it (see the unapply method)
-See case_class.scala

Pattern Matching

• Used extensively in Scala

• Like a super-powerful if

• Used with the match reserved word,
followed by a series of cases

Friday, January 10, 14

-See pattern_matching.scala

null

• In general, null is an excellent wonderful/
terrible feature

• Often poorly documented whether or not
null is possible

• Checking for impossible cases

• Not checking for possible cases

Friday, January 10, 14

Option

• A solution: encode null as part of a type

• For some type, say Object, if null is
possible say we have a
NullPossible<Object>

• Scala has this, known as Option

• In general, if null is possible, use Option

Friday, January 10, 14

-See option.scala

Tuples

• For when you want to return more than
one thing

• Can be created by putting datums in
parenthesis

• Can pattern match on them

Friday, January 10, 14

-See tuples.scala, tuples_revisited.scala

Sequence Processing
Functions

AKA: Why while is rare and for isn’t for

Friday, January 10, 14

Looping

• Scala has a while loop, but its use is highly
discouraged (again, point loss)

• It’s not actually needed

• General functional programming style is
recursion, but this is usually overkill

Friday, January 10, 14

foreach

• Applies a given function to each element of
a Seq

Friday, January 10, 14

-See foreach.scala

map

• Like foreach, in that it applies a given
function to each element of a sequence

• However, it also returns a new sequence
that holds the return values of each of the
function calls

Friday, January 10, 14

-See MapExample.scala, MapExample.java

filter

• Takes a predicate, i.e. a function that
returns true or false

• Applies the predicate to each item in a list

• A new list is returned that contains all the
items for which the predicate was true

Friday, January 10, 14

-See FilterExample.java, FilterExample.scala

foldLeft

• Extremely flexible, but sometimes unwieldy

• Takes a base element

• Takes a function that takes a current result
and a current list element

• The function will manipulate result with
respect to the current element

Friday, January 10, 14

-See fold.scala, FoldLeftExample.java, FoldLeftExample.scala

flatMap

• Like map, but made especially for functions
that return Seqs

• Will internally “flatten” all of the inner
Seqs into a single Seq

• More on this later in the course

Friday, January 10, 14

-see flatMap.scala

for Comprehensions

• Much like Python’s list comprehensions

• Internally translated into a series of
foreach, flatMap, map, and filter
operations

Friday, January 10, 14

-See for.scala

Compiling/Running
Code

• Use scalac to compile code

• Use scala to run the code

• scala and scalac are all on CSIL

Friday, January 10, 14

Running the REPL

• Just type scala at the command line

• Pretty nifty to quickly check to see what an
expression does

Friday, January 10, 14

Development

• If you want an IDE, IntelliJ IDEA has been
recommended

• Personally, I use emacs and the scala-
mode plugin (needs to be downloaded)

Friday, January 10, 14

Assignment 1

• Due Tuesday, January 14

• Will need most everything shown here

• Hint hint useful APIs:

•Seq.mkString

•Seq.reverse

•Seq.head

•Seq.tail

Friday, January 10, 14

