CS162 Week |

Kyle Dewey




Overview

® Basic Introduction
® CS Accounts

® Scala survival guide

Friday, January 10, 14



Office Hour

® Choose an hour from within:

® Tuesday/Thursday || AM - | PM
® Friday | | AM -4 PM

® Also available by appointment

Friday, January 10, 14



Google Group

® We have a Google group (162w 14)
® Feel free to discuss, even post test cases

® Pretty much anything CS|62-related that
doesn’t involve sharing code

Friday, January 10, 14



Communication Policy

® Assume I'll take 24 hours to respond to any
email

® |'m usually a lot faster than that

® Google group is usually a better resource
® | can still answer it
® Other people can see it

® Someone else may respond faster

Friday, January 10, 14

-This is mostly so I’'m not swamped with emails right before a project. It gets ugly.
—-Certain things are obviously directed at me: what is my grade for this? However, much
project help is better fit for the Google group



CS Account

® You will need a CS account

® One can be created at:
https://accounts.engr.ucsb.edu/create/

Friday, January 10, 14


https://accounts.engr.ucsb.edu/create/
https://accounts.engr.ucsb.edu/create/

Collaboration

® You may discuss ideas
® |.e.check if the list is sorted
® You may exchange test cases

® |.e. this test fails if your code does not
check if the list is sorted

® All these can be freely posted to the
Google group, too

Friday, January 10, 14



Collaboration

® You may nhot exchange or discuss
code

® |.e.this code checks if a list is sorted

® |.e.you need a function that uses three
variables that returns...

® We automatically determine similarity scores
for code via a proven reliable method

Friday, January 10, 14



Protect Your Code

® Do not host your code on a public
repository

® Execute chmod 600 filename for
each file in your project (chmod 600
* . scala usually does the trick)

® Otherwise, people can and have taken
other people’s code

® |n general, it is not possible to determine
who stole from who

Friday, January 10, 14
—Can get up to 5 free private repositories on GitHub as a student, and private bitbucket

repositories are always free



Discussion / Lecture
Importance

® These are not mandatory, but it is nearly
impossible to do the assighments without
them

® “nearly impossible” means “expect to
take several hours studying the lecture
and discussion notes before you can
implement it”

® |f you cannot make lecture/discussion,
arrange for someone else to take notes for
you

Friday, January 10, 14



Assignment Difficulty

® The assignments are intended to be very
difficult and take multiple sittings to do

® |t is ill-advised to do them alone

® |t is even more ill-advised to do them the
night before

Friday, January 10, 14
-Your entire grade is based on 7 assignments, so the difficulty needs to come from
somewhere
-Start early!



Assignment Difficulty

® Most of the difficulty will be in figuring out
exactly what needs to be done and how to

do it
® The coding is accidental

® Historically, shorter complete solutions
tend to pass more tests

Friday, January 10, 14
-This doesn’t mean the instructions are ambiguous; this means that the concepts are that

new and potentially that difficult to understand



Scala

Friday, January 10, 14



Scala Discussion

® |t’s not possible to cover everything in
these slides in-depth in one section

® This is intended as a strong foundation for
the class assighments

® Examples are on my website
(scala examples.zip)

Friday, January 10, 14



VWWhat!

® A non-Java language that runs on the Java
Virtual Machine (JVM)

® Essentially a “better Java”

® Better suited for object-oriented
programming and functional programming

Friday, January 10, 14



VWhy

® | ess boilerplate
® More expressive (read: less code)
® Think more, type less

® Clarity

Friday, January 10, 14

-1t is not unheard of to spend an hour on several lines of code
-See boilerplate.scala, boilerplate.java



Properties and ldioms

® Everything is an object (unlike Java)
® Emphasis on immutable state

® |n other words, avoid reassighment

Friday, January 10, 14



Variable Declaration

® [wo forms:val and var

® val creates a runtime constant, much
like final in Java

® var creates a typical mutable variable

(HIGHLY discouraged and will typically
negatively impact grade)

Friday, January 10, 14
-See variables.scala



Method Definition

® Uses the def reserved word
® Everything is public by default

® The result of the last expression in the
function is what is returned - no need for
return (which should be avoided)

Friday, January 10, 14
-See method.scala



Type Inferencer

® Can automatically determine the type of
® Variables
® Function return values
® Anonymous function parameters

® Not completely foolproof, but usually
excellent

Friday, January 10, 14
-See type_inference.scala



Higher-Order
Functions

® Functions can take other functions as
parameters, or even return functions

® Functions (well, closures) can be created on
the fly

® Note: this is strictly more powerful than
function pointers

® For the JavaScript people: think callbacks

Friday, January 10, 14
-See higher_order.scala



Classes

® Created with the c¢class reserved word
® Defaults to public access

® Constructors are not typical

Friday, January 10, 14
-See class.scala



Traits

® Created with the trait reserved word

® |ike a mixin in Ruby

® Think Java interfaces, but they can have
methods defined on them

® More powerful than that, but not relevant
to this course

Friday, January 10, 14
-See trait.scala



object

® Used in much the same way as static is
in Java

® Defines both a class and a single instance of
that class (and only a single instance)

® Automated implementation of the
Singleton design pattern

® Keeps everything consistently an object

Friday, January 10, 14
-See object.scala and object.java



equals,==,and eq

® As with Java, if you want to compare value
equality, you must extend equals

® (Case classes automatically do this for you

® However, instead of saying
x.equals (y),merely say x == vy

® |f you want reference equality, say:
X eq y

Friday, January 10, 14



Case Classes

® Behave just like classes, but a number of
things are automatically generated for you

® Including hashCode, equals,and
getters

® Typically used for pattern matching

Friday, January 10, 14

—Regular classes can be used in pattern matching as well, but you usually need to put more
effort into it (see the unapply method)

-See case_class.scala



Pattern Matching

® Used extensively in Scala

® like a super-powerful if

® Used with the match reserved word,
followed by a series of cases

Friday, January 10, 14
-See pattern_matching.scala



null

® |n general,null is an excellent wonderful/
terrible feature

® Often poorly documented whether or not
null is possible

® Checking for impossible cases

® Not checking for possible cases

Friday, January 10, 14



Option

® A solution:encode null as part of a type

® For some type,say Object,if null is

possible say we have a
NullPossible<Object>

® Scala has this, known as Option

® |n general,if null is possible, use Option

Friday, January 10, 14
-See option.scala



Tuples

® For when you want to return more than
one thing

® Can be created by putting datums in
parenthesis

® Can pattern match on them

Friday, January 10, 14
-See tuples.scala, tuples_revisited.scala



Sequence Processing
Functions

AKA:Why whileis rare and for isn't for




Looping

® Scala has a while loop, but its use is highly
discouraged (again, point loss)

® |t's not actually needed

® General functional programming style is
recursion, but this is usually overkill

Friday, January 10, 14



foreach

® Applies a given function to each element of
a oeq

Friday, January 10, 14
-See foreach.scala



map

® Like foreach,in that it applies a given
function to each element of a sequence

® However, it also returns a new sequence
that holds the return values of each of the
function calls

Friday, January 10, 14
-See MapExample.scala, MapExample.java



filter

® Takes a predicate, i.e. a function that
returns true or false

® Applies the predicate to each item in a list

® A new list is returned that contains all the
items for which the predicate was true

Friday, January 10, 14
-See FilterExample.java, FilterExample.scala



foldLeft

® Extremely flexible, but sometimes unwieldy
® TJakes a base element

® TJakes a function that takes a current result
and a current list element

® The function will manipulate result with
respect to the current element

Friday, January 10, 14
-See fold.scala, FoldLeftExample.java, FoldLeftExample.scala



flatMap

® Like map, but made especially for functions
that return Seqgs

® Will internally “flatten” all of the inner
Seqgs into a single Seq

® More on this later in the course

Friday, January 10, 14
-see flatMap.scala



for Comprehensions

® Much like Python’s list comprehensions

® |nternally translated into a series of
foreach, flatMap,map,and filter

operations

Friday, January 10, 14
-See for.scala



Compiling/Running
Code

® Use scalac to compile code
® Use scala to run the code

® scalaand scalac are all on CSIL

Friday, January 10, 14



Running the REPL

® Just type scala at the command line

® Pretty nifty to quickly check to see what an
expression does

Friday, January 10, 14



Development

® |f you want an IDE, Intelli] IDEA has been
recommended

® Personally,| use emacs and the scala-
mode plugin (needs to be downloaded)

Friday, January 10, 14



Assignment |

® Due Tuesday, January 14
® Will need most everything shown here

® Hint hint useful APIs:

® Seg.mkString
® Seg.reverse
® Seg.head

® Seg.tail

Friday, January 10, 14



