
Discussion Week 1
TA: Kyle Dewey

Sunday, September 25, 11

Project 0 Walkthrough

Sunday, September 25, 11

Makefiles

Sunday, September 25, 11

What?
• A programmable command that can

generate new files based on existing ones

• Only that which is needed is made

main.c

helpers.h

helpers.c

main.o

helpers.o

a.out

Sunday, September 25, 11

Why?

• The standard “gcc *.c” or “javac
*.java” scales poorly

• Everything recompiled

• Cannot handle directory hierarchy

• Arbitrary builds may need an arbitrary
sequence of commands

Sunday, September 25, 11

Basics

• Makefiles consist of a series of rules

• Each rule has optional dependencies

• The first rule is the default

rule_name: target1 target2

how to build output

Sunday, September 25, 11

Basics

• Dependencies can be either rule names or
file names

• The process recursively follows
dependencies

Sunday, September 25, 11

Macros

• Macros can be used to define common
strings and utilities

MACRO_NAME = definition

Sunday, September 25, 11

Example

Sunday, September 25, 11

Including

• Makefiles can reference other makefiles

• Common rules

• Common macros

include ../Makefile

Sunday, September 25, 11

NACHOS Makefiles

Sunday, September 25, 11

C++ as it applies to
NACHOS

Sunday, September 25, 11

Recommendation

• c++.pdf in the c++example directory
is an excellent tutorial

• A bit dated, but applicable to NACHOS

Sunday, September 25, 11

What is Not Seen

• Templates

• Polymorphism

• Inheritance

• References

Sunday, September 25, 11

Header Files

#ifndef FILE_H

#define FILE_H

// code

/* more code

 * some more code */

#endif

Sunday, September 25, 11

Class Definition
class MyClass {

 public:

 MyClass();

 int doSomething(int x);

 private:

 int privateFunction();

 int privateVariable;

};
Sunday, September 25, 11

Class Definition

• Generally, class definition should be done in
header file

• The header file defines the interface to the
class

Sunday, September 25, 11

Class Implementation

• Classes should generally be implemented in
C++ code files (.cpp, .c++, .cc...)

• NACHOS uses the “.cc” extension

Sunday, September 25, 11

Class Implementation
Example

#include “MyClass.cc”

MyClass::MyClass() :

 privateVariable(5) {}

int MyClass::doSomething(int x) {

 return x + 1; }

int MyClass::privateFunction() {

 return privateVariable * 2; }

Sunday, September 25, 11

Memory Management

• C++ lacks a garbage collector

• Classes have user-defined destructors that
specify how to perform such cleanup

• Destructor for “MyClass” has the
method signature“~MyClass()”

Sunday, September 25, 11

Instantiating a Class

• On the stack:

•MyClass foo(5);

• On the stack (no-arg constructor):

•MyClass foo;

• On the heap:

•MyClass* foo = new MyClass(5);

•MyClass* foo = new MyClass();

Sunday, September 25, 11

Destructing an Instance

• On the stack, once a class goes out of
scope, the destructor is automatically called

• On the heap:

•delete foo;

• “foo” is a pointer to the class instance

Sunday, September 25, 11

Instantiating an Array

• On the stack:

•int foo[5];

•int foo[] = { 0, 1, 2, 3, 4 };

• On the heap:

•int* foo = new int[5];

Sunday, September 25, 11

Destructing an Array

• Performed automatically for once out of
scope for arrays on the stack

• On the heap:

•delete[] myArray;

• “myArray” is a pointer to the array

Sunday, September 25, 11

Destructing an Array
• There is only a single dimensional

“delete[]” operator

• For a two dimensional array “myArray” of
size “size”:

for(int x = 0; x < size; x++) {

 delete[] myArray[x];

}

delete[] myArray;

Sunday, September 25, 11

code/threads/list
Example from

NACHOS

Sunday, September 25, 11

Assembly (Time
Permitting)

Sunday, September 25, 11

Registers

• Programs need to use processor registers
in order to execute

Sunday, September 25, 11

Registers

Process #100Process #100

Register Value

A 1

B 2

C 3

Process #101Process #101

Register Value

A 30

B 40

C 50

Sunday, September 25, 11

Swapping In

• State of registers is copied from memory
to the registers

• Process resumes execution with the
restored register values

Sunday, September 25, 11

Swapping Out

• The process’ execution is paused

• The values of the registers is saved to
memory

Sunday, September 25, 11

Unportable

• The need to deal directly with registers
prevents the usage of portable, high-level
language code

• Assembly must be used

Sunday, September 25, 11

switch.s

Sunday, September 25, 11

