
Discussion Week 2
TA: Kyle Dewey

Tuesday, October 4, 11

Overview

• Concurrency

• Process level

• Thread level

• MIPS - switch.s

• Project #1

Tuesday, October 4, 11

Process Level

• UNIX/Linux: fork()

• Windows: CreateProcess()

Tuesday, October 4, 11

fork()/waitpid()
Example

Tuesday, October 4, 11

while(true)
{ fork(); }

Tuesday, October 4, 11

Threading Overview

Tuesday, October 4, 11

User-space Threads

• OS does not know about them

• Handle their own scheduling

• If one blocks, all block

• Cannot exploit SMP

Tuesday, October 4, 11

Blocking Example

User Thread 1 User Thread 2 User Thread 3

Process 1

OS

Process 2

Tuesday, October 4, 11

Thread Standpoint

User Thread 1 User Thread 2 User Thread 3

Process 1

OS

Process 2

Tuesday, October 4, 11

OS Standpoint

Process 1

OS

Process 2

Tuesday, October 4, 11

Blocking

• OS only sees a process

• OS blocks the process, in turn blocking all
user-space threads

Tuesday, October 4, 11

SMP

• Processes have only a single thread

• Without kernel assistance, this cannot be
changed

• Only one thread means only one CPU

Process 1

OS

Process 2

Tuesday, October 4, 11

Kernel-Assisted

• OS has knowledge of threads

• OS schedules them

• Act like individual processes sharing an
address space

Tuesday, October 4, 11

General Pros/Cons

• Kernel threads can exploit SMP

• Kernel threads will not cause all threads to
block

• User-space threads are lightweight

• Context switch is cheap

• Likely far less code

Tuesday, October 4, 11

These are the
concepts!

Tuesday, October 4, 11

Then implementation
happened...

Tuesday, October 4, 11

Question: Do Pthreads
threads run in user-
space or are they
kernel-assisted?

Tuesday, October 4, 11

Answer: Yes.

Tuesday, October 4, 11

Pthreads

• Really just a standard with a number of
possible implementations

• Implementation can be kernel-assisted or in
user-space

• Most OSes are kernel-assisted

Tuesday, October 4, 11

Pthreads Example

Tuesday, October 4, 11

Java Threads

• Again, merely a standard

• Most implement as kernel-assisted threads

Tuesday, October 4, 11

Java Example

Tuesday, October 4, 11

Kernel Thread
Implementation

• OS can implement threads however it likes

• Pthreads and Java are libraries built on top
of the threading primitives provided by the
OS

Tuesday, October 4, 11

Linux vs. Windows

• Linux provides the clone() system call

• Threads are actually processes

• Windows provides CreateThread()

• Referred to as “lightweight processes”

Tuesday, October 4, 11

NACHOS Threads

• Kernel-assisted

• Cannot currently handle interrupts or
preemption correctly

• Similar to MS-DOS...until project 2

Tuesday, October 4, 11

MS-DOS/NACHOS

• One thread of execution

• One process can run

• OS is more like a large, complex software
library

Tuesday, October 4, 11

Thread Primitives

• Fork() - acts much like
pthread_create

• Yield() - gives up the CPU for any other
available threads

• Sleep() - like yield, but calling thread is
blocked

• Finish() - terminates calling thread

Tuesday, October 4, 11

For Project 1

• Fork() creates, but does not immediately
start running, a new thread

• Though there is no I/O, Sleep() can still
be called to block on waiting for a critical
region to clear

Tuesday, October 4, 11

NACHOS Threads

Tuesday, October 4, 11

Concurrency

• Looks easy

• Really hard to get right

• Really hard

• No seriously, borderline impossible

Tuesday, October 4, 11

Race Condition

• Different results are possible based on
different process/thread orderings

• Ordering may be correct 99.999% of the
time

Tuesday, October 4, 11

Deadlock

• Two processes/threads wait for each other
to do something

• While they wait, they do not do whatever
it is they are waiting for

• Potential outcome of a race condition

Tuesday, October 4, 11

Critical Region

• A point in code where the ordering
matters

• Almost always this is some state that is
shared between processes/threads

Client
connect to server:port1
connect to server:port2
do something with both

Server
accept from port1
accept from port2

do something with both

Tuesday, October 4, 11

Fixing the Problem

• Do not share state

• Only share read-only state

• Carefully regulate write access to shared
state

Tuesday, October 4, 11

Regulation

• A critical region can be manipulated by only
one thread at a time

• Need a way to enforce that at most one
thread at any time point is in such a region

Tuesday, October 4, 11

Solving in Java

• Java provides the synchronized
keyword for blocks

• Only one thread at a time may access a
block marked with the synchronized
keyword

int x = 0;
public synchronized void
set(int y) {x = y;}
public int get() {return x;}

Tuesday, October 4, 11

Who cares about Java?

• Many concurrency primitives work
exactly like this, just with a little more
work

• One call upon entrance to critical region,
another upon exit

• The entrance and exit are implicit through
blocks with Java

Tuesday, October 4, 11

Semaphores

• Simply a shared integer

• One call decrements, another increments

• By convention, 0 is locked, and values > 0
are unlocked

• Values < 0 mean the semaphore is not
working!

Tuesday, October 4, 11

Semaphores

• Increment/decrement are atomic - they
are uninterruptible

• The highest possible number it can hold is
equal to the max number of callers to the
region it protects

Tuesday, October 4, 11

Example
int x = 0;
Semaphore s;
public void set(int y) {
s.decrement(); // wait/P/down

 x = y;
 s.increment(); } // signal/V/up
public int get() {return x;}

Tuesday, October 4, 11

Project 1 Task 1

• Experiment according to instructions

• Explain the execution of multithreaded
code

• Add semaphores and contrast the
difference

Tuesday, October 4, 11

Project 1 Task 2

• Implement locks - essentially semaphores
with a maximum of one caller at a time

• Given all the semaphore code to look at

• Hint hint it is a special case of a semaphore

Tuesday, October 4, 11

Project 1 Task 3

• Implement conditions

• Require a correct Lock implementation

• Allows a group of threads to synchronize
on a given section of code

• Can enforce that all must be at the same
point of execution

• Block until this is true

Tuesday, October 4, 11

Project 1 Task 4

• Identify and describe a race condition in a
given section of code

• Fix the race condition using semaphores

• Fix it another way using locks and/or
conditions

Tuesday, October 4, 11

