
Discussion Week 3
TA: Kyle Dewey

Monday, October 10, 11

Overview

• Concurrency overview

• Synchronization primitives

• Semaphores

• Locks

• Conditions

• Project #1

Monday, October 10, 11

Concurrency

• Looks easy

• Really hard to get right

• Really hard

• No seriously, borderline impossible

Monday, October 10, 11

Race Condition

• Different results are possible based on
different process/thread orderings

• Ordering may be correct 99.999% of the
time

Monday, October 10, 11

Deadlock

• Two processes/threads wait for each other
to do something

• While they wait, they do not do whatever
it is they are waiting for

• Potential outcome of a race condition

Monday, October 10, 11

(Sort of) Real Deadlock
Example

Monday, October 10, 11

Critical Region

• A point in code where the ordering
matters

• Almost always this is some state that is
shared between processes/threads

Client
connect to server:port1
connect to server:port2
do something with both

Server
accept from port1
accept from port2

do something with both

Monday, October 10, 11

Fixing the Problem

• Do not share state

• Only share read-only state

• Carefully regulate write access to shared
state

Monday, October 10, 11

Regulation

• A critical region can be manipulated by only
one thread at a time

• Need a way to enforce that at most one
thread at any time point is in such a region

Monday, October 10, 11

Solving in Java

• Java provides the synchronized
keyword for blocks

• Only one thread at a time may access a
block marked with the synchronized
keyword

int x = 0;
public synchronized void
set(int y) {x = y;}
public int get() {return x;}

Monday, October 10, 11

Who cares about Java?

• Many concurrency primitives work
exactly like this, just with a little more
work

• One call upon entrance to critical region,
another upon exit

• The entrance and exit are implicit through
blocks with Java

Monday, October 10, 11

Semaphores

• Simply a shared integer

• One call decrements, another increments

• By convention, 0 is locked, and values > 0
are unlocked

• Values < 0 mean?

Monday, October 10, 11

Semaphores

• Increment/decrement are atomic - they
are uninterruptible

• The highest possible number it can hold is
equal to the max number of callers to the
region it protects

Monday, October 10, 11

Usage Example

Monday, October 10, 11

Fix the Notebook
Problem

Monday, October 10, 11

NACHOS Semaphore
Methods

• P(): wait until the value is > 0, then
decrement

• V(): increment the value, waking up any
waiting threads

Monday, October 10, 11

NACHOS Semaphore
Implementation

Monday, October 10, 11

Spinlock

• Alternative to blocking

• A.K.A. busy waiting

• “Spin” in a tight loop

• More efficient for short critical regions

Monday, October 10, 11

Everything In Between

• May spinlock under certain conditions

• May schedule differently if in a locked state

• Implementation can do whatever it wants

Monday, October 10, 11

Project 1 Task 1

• Experiment according to instructions

• Explain the execution of multithreaded
code

• Add semaphores and contrast the
difference

Monday, October 10, 11

Project 1 Task 2

• Implement locks - essentially semaphores
with a maximum of one caller at a time

• Given all the semaphore code to look at

• Hint hint it is a special case of a semaphore

Monday, October 10, 11

Lock Methods

• Acquire(): calling thread waits until lock
is available, then grabs the lock

• Release(): calling threads gives up the
lock

Monday, October 10, 11

Lock vs. Semaphore

• Locks permit at most one thread in a
region, not n

• Locks make sure that only the thread that
grabs the lock can release the lock

Monday, October 10, 11

Lock Example

Monday, October 10, 11

Project 1 Task 3

• Implement conditions

• Requires a correct Lock implementation

Monday, October 10, 11

Conditions

• Allow a group of threads to synchronize on
a given condition

• Until the condition is true, they wait

Monday, October 10, 11

Condition Methods

• Wait(lock): release the given lock,
wait until signaled, and acquire the lock

• Signal(lock): wake up any single
thread waiting on the condition

• Broadcast(lock): wake up all
threads waiting on the condition

Monday, October 10, 11

Condition Semantics

• The lock should be owned by the calling
thread

• Only reason why the reference
implementation’s Signal() and
Broadcast() needs the lock

• Signal() and Broadcast() require
that the lock is currently held

Monday, October 10, 11

Condition Example -
Broadcast

Monday, October 10, 11

Condition Example -
Signal

Monday, October 10, 11

Project 1 Task 4

• Identify and describe a race condition in a
given section of code

• Fix the race condition using semaphores

• Fix it another way using locks and/or
conditions

Monday, October 10, 11

Identifying Race
Conditions

• NACHOS is more or less deterministic

• Some of the hardest errors to find

Monday, October 10, 11

Project Tips

• Start early

• Use the given implementation as a guide

• Overcomplicated

• Buggy

• Ugly

• The Print() method is a lifesaver

Monday, October 10, 11

FAQ

Monday, October 10, 11

“What’s the difference?”

• Not much

• Possible to implement some in terms of
others

• Some may be more natural in different
contexts

Monday, October 10, 11

“Are these even working?”

• If everything is done correctly, the output
remains the same for first task

• NACHOS thread scheduler is simple

• No interrupts

• All threads are part of the same program

Monday, October 10, 11

“Why bother?”

• Change any of the aforementioned things,
and it will matter big time

• Later projects will need this for
correctness

• Gentle introduction to concurrency and
synchronization primitives

Monday, October 10, 11

“Conditions make no sense!”

• Name most people are used to: monitors

• http://www.java-samples.com/
showtutorial.php?tutorialid=306 has an
excellent example of usage (Java standpoint.
Examples were adapted from this.)

Monday, October 10, 11

http://www.java-samples.com/showtutorial.php?tutorialid=306
http://www.java-samples.com/showtutorial.php?tutorialid=306
http://www.java-samples.com/showtutorial.php?tutorialid=306
http://www.java-samples.com/showtutorial.php?tutorialid=306

