
Discussion Week 3
TA: Kyle Dewey

Monday, October 10, 11



Overview

• Concurrency overview

• Synchronization primitives

• Semaphores

• Locks

• Conditions

• Project #1
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Concurrency

• Looks easy

• Really hard to get right

• Really hard

• No seriously, borderline impossible
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Race Condition

• Different results are possible based on 
different process/thread orderings

• Ordering may be correct 99.999% of the 
time
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Deadlock

• Two processes/threads wait for each other 
to do something

• While they wait, they do not do whatever 
it is they are waiting for

• Potential outcome of a race condition
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(Sort of) Real Deadlock 
Example
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Critical Region

• A point in code where the ordering 
matters

• Almost always this is some state that is 
shared between processes/threads

Client
connect to server:port1
connect to server:port2
do something with both

Server
accept from port1
accept from port2

do something with both
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Fixing the Problem

• Do not share state

• Only share read-only state

• Carefully regulate write access to shared 
state
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Regulation

• A critical region can be manipulated by only 
one thread at a time

• Need a way to enforce that at most one 
thread at any time point is in such a region
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Solving in Java

• Java provides the synchronized 
keyword for blocks

• Only one thread at a time may access a 
block marked with the synchronized 
keyword

int x = 0;
public synchronized  void 
set( int y ) {x = y;}
public int get() {return x;}
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Who cares about Java?

• Many concurrency primitives work 
exactly like this, just with a little more 
work

• One call upon entrance to critical region, 
another upon exit

• The entrance and exit are implicit through 
blocks with Java
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Semaphores

• Simply a shared integer

• One call decrements, another increments

• By convention, 0 is locked, and values > 0 
are unlocked

• Values < 0 mean?
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Semaphores

• Increment/decrement are atomic - they 
are uninterruptible

• The highest possible number it can hold is 
equal to the max number of callers to the 
region it protects
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Usage Example
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Fix the Notebook 
Problem
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NACHOS Semaphore 
Methods

• P(): wait until the value is > 0, then 
decrement

• V(): increment the value, waking up any 
waiting threads
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NACHOS Semaphore 
Implementation
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Spinlock

• Alternative to blocking

• A.K.A. busy waiting

• “Spin” in a tight loop

• More efficient for short critical regions
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Everything In Between

• May spinlock under certain conditions

• May schedule differently if in a locked state

• Implementation can do whatever it wants
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Project 1 Task 1

• Experiment according to instructions

• Explain the execution of multithreaded 
code

• Add semaphores and contrast the 
difference
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Project 1 Task 2

• Implement locks - essentially semaphores 
with a maximum of one caller at a time

• Given all the semaphore code to look at

• Hint hint it is a special case of a semaphore
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Lock Methods

• Acquire(): calling thread waits until lock 
is available, then grabs the lock

• Release(): calling threads gives up the 
lock
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Lock vs. Semaphore

• Locks permit at most one thread in a 
region, not n

• Locks make sure that only the thread that 
grabs the lock can release the lock
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Lock Example
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Project 1 Task 3

• Implement conditions

• Requires a correct Lock implementation
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Conditions

• Allow a group of threads to synchronize on 
a given condition

• Until the condition is true, they wait
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Condition Methods

• Wait( lock ): release the given lock, 
wait until signaled, and acquire the lock

• Signal( lock ): wake up any single 
thread waiting on the condition

• Broadcast( lock ): wake up all 
threads waiting on the condition
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Condition Semantics

• The lock should be owned by the calling 
thread

• Only reason why the reference 
implementation’s Signal() and 
Broadcast() needs the lock

• Signal() and Broadcast() require 
that the lock is currently held
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Condition Example - 
Broadcast
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Condition Example - 
Signal
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Project 1 Task 4

• Identify and describe a race condition in a 
given section of code

• Fix the race condition using semaphores

• Fix it another way using locks and/or 
conditions
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Identifying Race 
Conditions

• NACHOS is more or less deterministic

• Some of the hardest errors to find
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Project Tips

• Start early

• Use the given implementation as a guide

• Overcomplicated

• Buggy

• Ugly

• The Print() method is a lifesaver
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FAQ
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“What’s the difference?”

• Not much

• Possible to implement some in terms of 
others

• Some may be more natural in different 
contexts
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“Are these even working?”

• If everything is done correctly, the output 
remains the same for first task

• NACHOS thread scheduler is simple

• No interrupts

• All threads are part of the same program
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“Why bother?”

• Change any of the aforementioned things, 
and it will matter big time

• Later projects will need this for 
correctness

• Gentle introduction to concurrency and 
synchronization primitives
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“Conditions make no sense!”

• Name most people are used to: monitors

• http://www.java-samples.com/
showtutorial.php?tutorialid=306 has an 
excellent example of usage (Java standpoint.  
Examples were adapted from this.)
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