
Discussion Week 4
TA: Kyle Dewey

Monday, October 17, 11

Overview

• Project #1 debriefing

• System calls

• Project #2

Monday, October 17, 11

Task 1 Bugs/Ugliness

Monday, October 17, 11

About that Project...

• I’m not actually grading anything (probably)

• Clarity is a wonderful thing

• I apologize for any incorrect information

• Output is not the same with
semaphores

• Please output information in laundromat

Monday, October 17, 11

System Calls

Monday, October 17, 11

Why Operating
Systems?

• Multitasking

• Resource management

• CPU

• Memory

• Disks

• Printers...

Monday, October 17, 11

Abstraction

• “I just want to print!”

• Lots of different, very similar hardware

• Unify with a common interface

Monday, October 17, 11

Isolation

• Each process “thinks” it is the only one on
the system

• Each has access to resources

Monday, October 17, 11

Total Resource Access

• Process A prints “Hello world!”

• Process B prints “Goodbye cruel world!”

Hello woGoodbye crld!
ruel world!

Monday, October 17, 11

Mediated Access

• Gain access through another entity

• The entity makes sure everything is isolated

Monday, October 17, 11

Mediated Access

• Process A prints “Hello world!”

• Process B prints “Goodbye cruel world!”

Hello world!
Goodbye cruel world!

Monday, October 17, 11

“Entity”

• The entity is the OS

• The pathway for mediation is a system call

• System calls allow processes to
communicate with the OS

Monday, October 17, 11

Syscall Frequency

• Any I/O (network, disk, ...)

• Any process manipulation

• Interprocess communication

• Shared library access

• Essentially access to any shared resource

Monday, October 17, 11

Tools

• strace: Linux tool for intercepting
syscalls

• truss: Solaris/BSD tool for intercepting
syscalls

• Usage: strace ./a.out

Monday, October 17, 11

“Useless” C Program

Monday, October 17, 11

C Hello World

Monday, October 17, 11

Java Hello World (Note
-F -f was needed)

Monday, October 17, 11

Python Hello World

Monday, October 17, 11

The Point

• Syscalls are made all over the place

• Rarely, if ever, directly called in actual code

• Unwieldy

• Layer of abstraction

Monday, October 17, 11

System Call Execution

read()

User Space

Kernel Space

read() readFromDisk()

read()

Monday, October 17, 11

Why Kernel Space?

• Kernel executes call “on behalf” of a
process

• If a normal process could do it, then there
is no isolation

• Possible to have more than just “kernel
level” and “user level”

Monday, October 17, 11

Something in Between -
Microkernels

• Goal: put as much of the kernel as possible
in user space

• Turns out a lot can be done in user space

Monday, October 17, 11

Microkernel

Monday, October 17, 11

Project #2 Part 1

Monday, October 17, 11

Basic Idea

• Implement system calls for basic process
and file manipulation

• Note that “basic” means the base of
everything - not simple!

Monday, October 17, 11

Syscall Naming in
NACHOS

• Names shared with threads implementation

• These are very different, though you may
need the corresponding thread operations

Monday, October 17, 11

Fork(func)

• Copies address space of caller

• Creates a new process in this copied
address space

• Executes the given function, with this new
process in the new address space

• Note the dissimilarity to UNIX’s fork()

Monday, October 17, 11

Fork() Example

Monday, October 17, 11

Yield()

• Temporary yields the calling process to any
other processes available to run

Monday, October 17, 11

Exit(int)

• Terminates the calling thread

• The parameter is the exit status (ignored
for this project)

Monday, October 17, 11

Exec(filename)

• Spawns a new process

• Executes the code specified in filename
using the new process

• Note this does not clobber the calling
process, as it does with UNIX

Monday, October 17, 11

Join(SpaceId)

• Waits for the process with the given
SpaceId

• The calling process blocks until the process
backing SpaceId returns

Monday, October 17, 11

Project #2 Part 2

Monday, October 17, 11

NACHOS Filesystem

• Under Linux, it’s simply a single big file

• Under NACHOS, it contains NACHOS’
directory hierarchy

• Unless otherwise mentioned, the slides
refer to the NACHOS hierarchy

Monday, October 17, 11

UNIX Similarity

• NACHOS is modeled after UNIX

• Some files are actually device interfaces

Monday, October 17, 11

Filesystem Stubs

• Some stubs are provided that may help

• Extremely basic and limited

• May need to scrap entirely

Monday, October 17, 11

Create(name)

• Create a new, empty file with the given
name

• Note that you need to be able to extend
file lengths - FileSystem::Create
indicates an issue with this

Monday, October 17, 11

Open(name)

• Opens the file with the given name

• Returns NULL if it does not exist

Monday, October 17, 11

Close(OpenFileId)

• Closes the file denoted by the given open
file ID

Monday, October 17, 11

ReadAt(buffer,
size, pos)

• Reads size bytes starting at pos into
buffer

• Note that this is a method on the
OpenFile object

Monday, October 17, 11

WriteAt(buffer,
size, pos)

• Write size bytes from buffer, starting
at pos

• Note that this is a method on the
OpenFile object

Monday, October 17, 11

Project #2 Notes

• Far more provided detail

• Well-defined outputs

• Due November 8 at midnight

• Much more difficult than project #1
(worth twice as much, too)

Monday, October 17, 11

