
Discussion Week 5
TA: Kyle Dewey

Tuesday, October 25, 11

Overview

• HW 3.10 and 6.2 review

• Binary formats

• System call execution in NACHOS

• Memory management in NACHOS

• I/O in NACHOS

Tuesday, October 25, 11

Homework 3.10

• “Identify the values of pid at lines A, B, C,
and D. Assume that the actual pids of the
parent and child are 2600 and 2603,
respectively.”

Tuesday, October 25, 11

Homework 6.2
• The Cigarette-Smokers Problem

Agent

Match
Smoker

Paper
Smoker

Tobacco
Smoker

Table
(holds two of three items)

Tuesday, October 25, 11

Problem Specifics

• Agent places two items

• Smoker with remaining item grabs the two
and smokes

• The process repeats

Tuesday, October 25, 11

Java Implementation

Tuesday, October 25, 11

Binary Formats

Tuesday, October 25, 11

NOFF

• NACHOS Object File Format

Magic Number
(0xBADFAD)

Code (Text)

Initialized Data
(Data)

Uninitialized Data
(BSS)

Tuesday, October 25, 11

Why Bother?

• CPU sees only a stream of instructions

• All gets loaded into memory anyway

Tuesday, October 25, 11

Advantage

• Tells OS roughly how portions will be used

• Optimizations possible

• Share (reentrant) code and constant data

• Prevent execution of non-code regions

Tuesday, October 25, 11

System Calls Revisited

Tuesday, October 25, 11

System Call Execution

read()

User Space

Kernel Space

read() readFromDisk()

read()

Tuesday, October 25, 11

User -> Kernel

• Problem: kernel space and user space are
enforced by hardware

• Hardware must be informed of jump

Tuesday, October 25, 11

Solution?

• Instruction to specify the level

• By necessity, it is privileged

• Need kernel space to tell the system
we’re in kernel space - catch 22

Tuesday, October 25, 11

Existing Machinery

• Interrupts are serviced by the kernel

• Generated from other devices, often I/O

• Preempt all else and enter the kernel

• The routines that service interrupts are
called “interrupt service routines” - ISRs

Tuesday, October 25, 11

Interrupts

Hard
Drive

ISR 1

ISR 2

ISR 3

Int 1

Memory

CPU

Tuesday, October 25, 11

Using Interrupts

• Trigger a “software interrupt”

• Kernel mode entered synchronously

• Parameters can be passed in registers, in
a specific memory location, etc.

• Note that the actual mechanism and lingo
is hardware dependent

Tuesday, October 25, 11

MIPS System Calls

• MIPS has the “syscall” instruction

• Processor throws a system call exception,
triggering the OS’ system call service
routine

• By convention, the syscall ID is in $v0, and
arguments are passed in $a0 and $a1

Tuesday, October 25, 11

MIPS System Calls
• Assume we want the system call with ID 5

• This call takes no arguments

addi $v0, $zero, 5
syscall CPU Syscall ISR

Syscall 5
Handler

Tuesday, October 25, 11

•code/userprog/
exception.cc

•code/userprog/
syscall.h

•code/test/
start.s

Tuesday, October 25, 11

Memory Management

Tuesday, October 25, 11

Project #2 Memory

• Physical = virtual (until Project #3)

• Must using paging

• Need to allocate and free pages as
requested

Tuesday, October 25, 11

NACHOS Memory

• Does not have much

• 128 byte pages

• 32 pages total

• 8 pages for each process’ stack + data +
code

• Simple bitmap is sufficient to record what is
and is not used

Tuesday, October 25, 11

Contiguous Memory

• Since physical = virtual, served memory
requests must be contiguous

• I.e. if a process requests 5 pages, they
must be contiguous

• *Could* do compaction, but this is a
terrible idea

Tuesday, October 25, 11

Fork() Example

Used - P1

Free

Free

Free

Used - P2

Used - P1

Free

Free

Used - P2

Used - P3
P1 fork()s P3

Memory by page Memory by page

Tuesday, October 25, 11

Exit() Example

Used - P1

Free

Free

Used - P2

Used - P3
P2 exit()s

Memory by page Memory by page

Used - P1

Free

Free

Used - P3

Free

Tuesday, October 25, 11

Getting Pages

• Memory is available through:

• machine->mainMemory

• Merely array of 1 byte characters

• Need to split into pages on your own

Tuesday, October 25, 11

Memory and
Concurrency

• Multiple processes may request pages at
the same time

• Only one may get any given page

• Synchronization primitives from Project #1
will have to be used

• Make sure they work correctly!

Tuesday, October 25, 11

I/O Syscalls

Tuesday, October 25, 11

NACHOS Disk

• Do not need to worry about this until
Project 3

• I/O syscalls for Project 2 utilize Linux’s
existing syscalls for file I/O directly

Tuesday, October 25, 11

I/O Syscalls

• Actually implement Read() and
Write(), NOT readAt() and
writeAt()

• readAt() and writeAt()’s provided
implementations are sufficient to
implement Read() and Write()

Tuesday, October 25, 11

Files and Concurrency

• Process A prints “Hello world!”

• Process B prints “Goodbye cruel world!”

Hello woGoodbye crld!
ruel world!

Tuesday, October 25, 11

Files and Concurrency

• Determining what needs to be locked may
be difficult

• May have separate things that need locking

• May need multiple locks for distinct
resources

• Concurrent reads are OK, but not
concurrent writes

Tuesday, October 25, 11

Open File Semantics

• Semantics of Fork() are that child
processes inherit open files

• Read() and Write() can only
manipulate open files

• If a process will not close its files upon
Exit(), then the OS must do so

Tuesday, October 25, 11

Open Files

• Which files are opened must be recorded
in the PCB

• This allows for all aforementioned
behaviors

• Also allows for an offset for subsequent
Read() and Write() requests

Tuesday, October 25, 11

Console

• Read() and Write() may also
manipulate the console

• Console is not opened or closed

• Constants specifying console usage are in
syscall.h

Tuesday, October 25, 11

Caveats

• The given code is really getting buggy

• Provided code is also getting really ugly

Tuesday, October 25, 11

How-To Implement

• Project #2 has a step-by-step
implementation guide at http://
www.cs.ucsb.edu/~cs170/projects/
homework_2guide.html

• Please read carefully

Tuesday, October 25, 11

http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html

