Discussion VWeek 5

TA: Kyle Dewey

Overview

HW 3.10 and 6.2 review

Binary formats

System call execution in NACHOS
Memory management in NACHOS

/O in NACHOS

Homework 3.10

® “|dentify the values of pid at lines A, B, C,

and D. Assume that the actual pids of the

parent and child are 2600 and 2603,
respectively.”

Homework 6.2

® The Cigarette-Smokers Problem

MFRdelp Paper Tobacco
Smoker Smoker Smoker

Table
(holds two of three items)

Tuesday, October 25, 11

Problem Specifics

® Agent places two items

® Smoker with remaining item grabs the two
and smokes

® The process repeats

Tuesday, October 25, 11

Java Implementation

Binary Formats

NOFF

® NACHOS Obiject File Format

Magic Number
(OxBADFAD)

Code (Text)

Initialized Data
(Data)

Uninitialized Data
(BSS)

Tuesday, October 25, 11

Why Bother?

® CPU sees only a stream of instructions

® All gets loaded into memory anyway

Tuesday, October 25, 11

Advantage

® Tells OS roughly how portions will be used
® Optimizations possible
® Share (reentrant) code and constant data

® Prevent execution of non-code regions

Tuesday, October 25, 11

System Calls Revisited

System Call Execution

User Space

readFromDisk()

Kernel Space

eeeeeeeeeeeeeeeeeeee

User -> Kernel

® Problem: kernel space and user space are
enforced by hardware

® Hardware must be informed of jump

Tuesday, October 25, 11

Solution?

® |nstruction to specify the level
® By necessity, it is privileged

® Need kernel space to tell the system
we're in kernel space - catch 22

Tuesday, October 25, 11

Existing Machinery

® |nterrupts are serviced by the kernel
® Generated from other devices, often /O
® Preempt all else and enter the kernel

® The routines that service interrupts are
called “interrupt service routines” - ISRs

Tuesday, October 25, 11

Interrupts

Memory

eeeeeeeeeeeeeeeeeeee

Using Interrupts

® Trigger a ‘software interrupt”
® Kernel mode entered synchronously

® Parameters can be passed in registers, in
a specific memory location, etc.

® Note that the actual mechanism and lingo
is hardware dependent

Tuesday, October 25, 11

MIPS System Calls

® MIPS has the “syscall” instruction

® Processor throws a system call exception,
triggering the OS’ system call service
routine

® By convention, the syscall ID is in $v0, and
arguments are passed in $a0 and Sal

Tuesday, October 25, 11

MIPS System Calls

® Assume we want the system call with ID 5

® This call takes no arguments

addi Sv0, Szero, 5
syscall

CPU Syscall ISR

Syscall 5
Handler

Tuesday, October 25, 11

ecode/userprog/
exception.cc

ecode/userprog/
syscall.h

ecode/test/
start.s

Memory Management

Project #2 Memory

® Physical = virtual (until Project #3)
® Must using paging

® Need to allocate and free pages as
requested

Tuesday, October 25, 11

NACHOS Memory

® Does not have much
® |28 byte pages
® 32 pages total

® 8 pages for each process’ stack + data +
code

® Simple bitmap is sufficient to record what is
and is not used

Tuesday, October 25, 11

Contiguous Memory

® Since physical = virtual, served memory
requests must be contiguous

® |.e.if a process requests 5 pages, they
must be contiguous

® *Could* do compaction, but this is a
terrible idea

Tuesday, October 25, 11

Fork () Example

Memory by page Memory by page

Used - Pl Used - Pl

Free Used - P3

Pl fork ()sP3

Free

Used - P2

Free

Used - P2

Free Free

Tuesday, October 25, 11

Exit () Example

Memory by page Memory by page
Used - Pl Used - P|
Used - P3 Used - P3

P2 exit ()s
Free . Free

Free

Used - P2

Free

Free

Tuesday, October 25, 11

Getting Pages

® Memory is available through:

®¢ machine->mainMemory

® Merely array of | byte characters

® Need to split into pages on your own

Tuesday, October 25, 11

Memory and
Concurrency

® Multiple processes may request pages at
the same time

® Only one may get any given page

® Synchronization primitives from Project #1|
will have to be used

® Make sure they work correctly!

Tuesday, October 25, 11

/O Syscalls

NACHOS Disk

® Do not need to worry about this until
Project 3

® |/O syscalls for Project 2 utilize Linux’s
existing syscalls for file /O directly

Tuesday, October 25, 11

/O Syscalls

® Actually implement Read () and

Write (),NOT readAt () and
writeAt ()

® readAt () and writeAt ()’s provided

implementations are sufficient to
implement Read () and Write ()

Tuesday, October 25, 11

Files and Concurrency

® Process A prints “Hello world!”

® Process B prints “Goodbye cruel world!”

Hello woGoodbye crld!
ruel world!

Tuesday, October 25, 11

Files and Concurrency

® Determining what needs to be locked may
be difficult

® May have separate things that need locking

® May need multiple locks for distinct
resources

® Concurrent reads are OK, but not
concurrent writes

Tuesday, October 25, 11

Open File Semantics

® Semantics of Fork () are that child
processes inherit open files

® Read () and Write () can only
manipulate open files

® |f a process will not close its files upon
FExit (), then the OS must do so

Tuesday, October 25, 11

Open Files

® Which files are opened must be recorded
in the PCB

® This allows for all aforementioned
behaviors

® Also allows for an offset for subsequent
Read () and Write () requests

Tuesday, October 25, 11

Console

® Read () and Write () may also
manipulate the console

® Console is not opened or closed

® Constants specifying console usage are in
syscall.h

Tuesday, October 25, 11

Caveats

® The given code is really getting buggy

® Provided code is also getting really ugly

Tuesday, October 25, 11

How-lo Implement

® Project #2 has a step-by-step
implementation guide at http://
www.cs.ucsb.edu/~cs | /0/projects/
homework 2guide.html

® Please read carefully

Tuesday, October 25, 11

http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html
http://www.cs.ucsb.edu/~cs170/projects/homework_2guide.html

