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Overview

• HW 3.10 and 6.2 review

• Binary formats

• System call execution in NACHOS

• Memory management in NACHOS

• I/O in NACHOS
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Homework 3.10

• “Identify the values of pid at lines A, B, C, 
and D.  Assume that the actual pids of the 
parent and child are 2600 and 2603, 
respectively.”
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Homework 6.2
• The Cigarette-Smokers Problem

Agent

Match 
Smoker

Paper 
Smoker

Tobacco 
Smoker

Table
(holds two of three items)
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Problem Specifics

• Agent places two items

• Smoker with remaining item grabs the two 
and smokes

• The process repeats
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Java Implementation
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Binary Formats
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NOFF

• NACHOS Object File Format

Magic Number 
(0xBADFAD)

Code (Text)

Initialized Data 
(Data)

Uninitialized Data 
(BSS)
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Why Bother?

• CPU sees only a stream of instructions

• All gets loaded into memory anyway
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Advantage

• Tells OS roughly how portions will be used

• Optimizations possible

• Share (reentrant) code and constant data

• Prevent execution of non-code regions
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System Calls Revisited
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System Call Execution

read()

User Space

Kernel Space

read() readFromDisk()

read()
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User -> Kernel

• Problem: kernel space and user space are 
enforced by hardware

• Hardware must be informed of jump
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Solution?

• Instruction to specify the level

• By necessity, it is privileged

• Need kernel space to tell the system 
we’re in kernel space - catch 22
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Existing Machinery

• Interrupts are serviced by the kernel

• Generated from other devices, often I/O

• Preempt all else and enter the kernel

• The routines that service interrupts are 
called “interrupt service routines” - ISRs
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Interrupts

Hard 
Drive

ISR 1

ISR 2

ISR 3

Int 1

Memory

CPU
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Using Interrupts

• Trigger a “software interrupt”

• Kernel mode entered synchronously

• Parameters can be passed in registers, in 
a specific memory location, etc.

• Note that the actual mechanism and lingo 
is hardware dependent
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MIPS System Calls

• MIPS has the “syscall” instruction

• Processor throws a system call exception, 
triggering the OS’ system call service 
routine

• By convention, the syscall ID is in $v0, and 
arguments are passed in $a0 and $a1
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MIPS System Calls
• Assume we want the system call with ID 5

• This call takes no arguments

addi $v0, $zero, 5
syscall CPU Syscall ISR

Syscall 5 
Handler
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•code/userprog/
exception.cc

•code/userprog/
syscall.h

•code/test/
start.s

Tuesday, October 25, 11



Memory Management
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Project #2 Memory

• Physical = virtual (until Project #3)

• Must using paging

• Need to allocate and free pages as 
requested 
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NACHOS Memory

• Does not have much

• 128 byte pages

• 32 pages total

• 8 pages for each process’ stack + data + 
code

• Simple bitmap is sufficient to record what is 
and is not used
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Contiguous Memory

• Since physical = virtual, served memory 
requests must be contiguous

• I.e. if a process requests 5 pages, they 
must be contiguous

• *Could* do compaction, but this is a 
terrible idea
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Fork() Example

Used - P1

Free

Free

Free

Used - P2

Used - P1

Free

Free

Used - P2

Used - P3
P1 fork()s P3

Memory by page Memory by page
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Exit() Example

Used - P1

Free

Free

Used - P2

Used - P3
P2 exit()s

Memory by page Memory by page

Used - P1

Free

Free

Used - P3

Free
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Getting Pages

• Memory is available through:

• machine->mainMemory

• Merely array of 1 byte characters

• Need to split into pages on your own
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Memory and 
Concurrency

• Multiple processes may request pages at 
the same time

• Only one may get any given page

• Synchronization primitives from Project #1 
will have to be used

• Make sure they work correctly!
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I/O Syscalls
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NACHOS Disk

• Do not need to worry about this until 
Project 3

• I/O syscalls for Project 2 utilize Linux’s 
existing syscalls for file I/O directly
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I/O Syscalls

• Actually implement Read() and 
Write(), NOT readAt() and 
writeAt()

• readAt() and writeAt()’s provided 
implementations are sufficient to 
implement Read() and Write()
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Files and Concurrency

• Process A prints “Hello world!”

• Process B prints “Goodbye cruel world!”

Hello woGoodbye crld!
ruel world!
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Files and Concurrency

• Determining what needs to be locked may 
be difficult

• May have separate things that need locking

• May need multiple locks for distinct 
resources

• Concurrent reads are OK, but not 
concurrent writes
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Open File Semantics

• Semantics of Fork() are that child 
processes inherit open files

• Read() and Write() can only 
manipulate open files

• If a process will not close its files upon 
Exit(), then the OS must do so
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Open Files

• Which files are opened must be recorded 
in the PCB

• This allows for all aforementioned 
behaviors

• Also allows for an offset for subsequent 
Read() and Write() requests
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Console

• Read() and Write() may also 
manipulate the console

• Console is not opened or closed

• Constants specifying console usage are in 
syscall.h
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Caveats

• The given code is really getting buggy

• Provided code is also getting really ugly

Tuesday, October 25, 11



How-To Implement

• Project #2 has a step-by-step 
implementation guide at http://
www.cs.ucsb.edu/~cs170/projects/
homework_2guide.html

• Please read carefully
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