
Discussion Week 7
TA: Kyle Dewey

Tuesday, November 8, 11

Overview

• Midterm debriefing

• Virtual memory

• Virtual Filesystems / Disk I/O

• Project #3

Tuesday, November 8, 11

How was the midterm?

Tuesday, November 8, 11

Recap

• Implemented a page table in Project #2

• Provides a mechanism for virtualizing
memory

Tuesday, November 8, 11

Without Virtual
Memory

Tuesday, November 8, 11

P1 Enters

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

P1

P1

Requests 2 Pages

Tuesday, November 8, 11

P2 Enters

Free

Free

Free

Free

P1

P1

P2

P2

Free

Free

P1

P1

Free

Free

Free

Free

P1

P1

Requests 2 Pages

Tuesday, November 8, 11

P1 Exits

Free

Free

Free

Free

P2

P2

Free

Free

Free

Free

Free

Free

P1

P1

P2

P2

Free

Free

P1

P1

Free

Free

2 Pages Freed

Tuesday, November 8, 11

P3 Enters

Requests 3 PagesFree

Free

Free

Free

P2

P2

Free

Free

Free

Free

???

Tuesday, November 8, 11

Problem

• Not enough contiguous free memory to
allocate request

• Plenty of free memory in total

• This is external fragmentation

Tuesday, November 8, 11

VM Advantage

• Avoids external fragmentation

• Far more flexible

Tuesday, November 8, 11

Paging

• Way to exploit virtual memory

• Idea: use memory as a cache for the whole
disk

• Virtual memory makes this caching
transparent to processes

Tuesday, November 8, 11

Paging Details

• In an ideal world, each page has the
following bits:

• Valid?

• Dirty?

• Referenced?

• NACHOS is an ideal world

Tuesday, November 8, 11

Valid Bit

• Project #2: does this process have access to
the given page?

• Modern OS / Project #3: is this page in
memory and/or does this process have
access to it?

Tuesday, November 8, 11

Valid Bit Example

Tuesday, November 8, 11

What of Permissions?

• Reference to page with invalid bit set traps
to OS anyway

• More accurately, it’s a “Trap to OS on Use”
bit

• Still need to check if caller can access page

Tuesday, November 8, 11

Dirty Bit
• Consider the lifetime of a page

Disk

Used

Free

Free

Free

Used

Used

Used

Used
Disk

Page Swapped In Page Swapped Out

Tuesday, November 8, 11

Swapping Out

• What if a page is read-only?

• What if a page was never modified since
being swapped in?

• In these cases, we end up paging out
information that is the same as what is
already on disk

• Complete waste!

Tuesday, November 8, 11

Dirty Bit

• If a page is modified, the dirty bit is set (by
hardware)

• Only write out if dirty bit is set

• Potentially cuts I/O on paging in half

Tuesday, November 8, 11

Referenced Bit

• If a page is used, set the referenced bit (by
hardware)

• Allow software to reset the bit

• Makes certain algorithms easier to
implement

Tuesday, November 8, 11

Question: Can kernel
pages be paged out?

Tuesday, November 8, 11

Project #3 Task I

• Implement paging with either FIFO with
second chance or LRU

• Step-by-step implementation instructions
included

Tuesday, November 8, 11

n Stages in Demand Paging

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the interrupted

Tuesday, November 8, 11

Virtual Filesystems

Tuesday, November 8, 11

Behold!
[kyledewey@csil ~]$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda6 26G 8.9G 16G 37% /
tmpfs 4.0G 1.4M 4.0G 1% /dev/shm
/dev/sda1 504M 68M 411M 15% /boot
/dev/sda7 26G 2.7G 22G 12% /local
/dev/sda3 4.0G 137M 3.7G 4% /tmp
/dev/sda2 7.9G 1011M 6.5G 14% /var
odin:/local/home/faculty
 268G 171G 84G 68% /cs/faculty
letters:/spool/mail 268G 62G 194G 25% /cs/mail
frigga:/local/home/student
 268G 252G 3.3G 99% /cs/student
frigga:/local/home/class
 268G 252G 3.3G 99% /cs/class
hal1.engr.ucsb.edu:/fs.real/hal1a/home
 4.5T 1006G 3.3T 24% /fs/home1
offside:/local/home 547G 451G 69G 87% /cs/arch
[kyledewey@csil ~]$ ls /cs
arch class faculty mail student
[kyledewey@csil ~]$

Tuesday, November 8, 11

Virtual Filesystem

• Puts underlying filesystems into a single,
consistent view

• Object-oriented design at its best

Tuesday, November 8, 11

Design Hierarchy
open(), read()...

(OS Specific)

(FS
specific)

Tuesday, November 8, 11

Advantage

• Easy to extend to multiple filesystems

• LOTS of code sharing possible (caching, file
management, ...)

Tuesday, November 8, 11

Storing Files

• Similar problems as with physical memory

• Differences:

• Access times are MUCH slower

• Much better performance if accessing
contiguous blocks

Tuesday, November 8, 11

F1 Written

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

F1

F1

2 Bytes Long

Tuesday, November 8, 11

F2 Written

Free

Free

Free

Free

P1

P1

F2

F2

Free

Free

F1

F1

Free

Free

Free

Free

F1

F1

2 Bytes Long

Tuesday, November 8, 11

F1 is Deleted

Free

Free

Free

Free

F2

F2

Free

Free

Free

Free

Free

Free

P1

P1

F2

F2

Free

Free

F1

F1

Free

Free

2 Bytes Freed

Tuesday, November 8, 11

P3 Written

3 Bytes WrittenFree

Free

Free

Free

P2

P2

Free

Free

Free

Free

???

Tuesday, November 8, 11

Solution

• Indirection in much the same way as virtual
memory

• This is what the File Allocation Table (FAT)
filesystem is named for

Tuesday, November 8, 11

FAT

• Separates disks into blocks

• Intuitively, blocks are to disk as pages are to
memory

• The number afterward defines the number
of bits used for an entry

Tuesday, November 8, 11

FAT

Block Next Block
0 ∞
1 3

2 9

3 6

4 -1

5 -1

6 ∞
7 -1

8 ∞
9 8

Next Block
∞
3

9

6

-1

-1

∞
-1

∞
8

Intuitively Actually Stored

Tuesday, November 8, 11

Issues

• Fragile with respect to faults

• Worst case: entire FAT must be read for a
single file

• seek() is actually O(n), where n is the
number of blocks used in a file

Tuesday, November 8, 11

Tradeoff

• Represent some blocks directly, others
indirectly

• Make the whole file metadata fit into one
block

• UNIX inodes usually do this

Tuesday, November 8, 11

UNIX inode

Tuesday, November 8, 11

Advantages

• For small files, only direct blocks are
needed

• seek() will be O(1)

• Still can represent large files

• seek() will be either O(1) or O(n),
depending how far into the file we are
seeking

Tuesday, November 8, 11

Relevance to NACHOS

• NACHOS has file size limitation of 4 Kb

• Need to extend to 100 Kb

• Will involve adding an indirect level on top
of existing direct level

Tuesday, November 8, 11

Project #3
Implementation Notes

Tuesday, November 8, 11

