
Discussion Week 8
TA: Kyle Dewey

Tuesday, November 15, 11



Overview

• Exams

• Interrupt priority

• Direct memory access (DMA)

• Different kinds of I/O calls

• Caching

• What I/O looks like

Tuesday, November 15, 11



Exams

Tuesday, November 15, 11



Interrupt Priority

• Process 1 makes an I/O request

• Process 2 makes an I/O request

• While setting up Process 2’s request, 
Process 1’s request finishes

Tuesday, November 15, 11



Interrupt Priority

Process 1

Process 2

I/O Start

I/O Start

I/O 
Done Time ->

Tuesday, November 15, 11



Prioritizing

• While servicing one interrupt, another 
interrupt occurred

• Question: should we finish our ISR or allow 
the other ISR to run immediately?

Tuesday, November 15, 11



Prioritizing

• Which ISRs preempt which is potentially 
complex

• Preemption within the kernel can be 
complex

• Similar issues as with process preemption

Tuesday, November 15, 11



Performing I/O

• “I/O takes forever, so while we do I/O, we 
schedule something else.”

• ...so how do we do I/O if we’re doing 
something else?

Tuesday, November 15, 11



DMA Controller
• Answer: special hardware

• Dedicated processor just for handling I/O

• The processor directly manipulates 
memory and the I/O device, bypassing the 
CPU

Tuesday, November 15, 11



DMA Messages

• Read X bytes starting at Y part of disk into 
Z part of memory

• Write X bytes to disk starting at part Y of 
disk from Z part of memory

Tuesday, November 15, 11



DMA in Action

CPU DMA
Write 3b

M: 1; D: 0

x f o o

a b c d

Memory

Disk

Time 1 Time 2

x f o o

f b c d

Memory

Disk

CPU Schedules Process

DMA Controller Does I/O

Tuesday, November 15, 11



DMA in Action
Times 3-4 Time 5

x f o o

f b c d

Memory

Disk

CPU Runs Process

DMA Controller Does I/O

x f o o

f o o d

Memory

Disk

CPU DMA
I/O Done

Tuesday, November 15, 11



DMA Issues

• Question: How does this work in with 
virtual memory?

• Question: How does this work with 
swappable pages?

Tuesday, November 15, 11



I/O Types

Tuesday, November 15, 11



Blocking/Nonblocking

• Blocking: wait until I/O is complete until 
returning

• Nonblocking: on each call, return what has 
been done so far

Tuesday, November 15, 11



Nonblocking

• Question: Why is this useful?

• Consider a program that gets the sum of 
integers from a 1 GB file

Tuesday, November 15, 11



Synchronous/
Asynchronous

• Synchronous: wait for I/O to complete 
before returning

• Asynchronous: do not wait for I/O to 
complete before returning

• Ideally, there is a callback to signal when 
the I/O is complete

Tuesday, November 15, 11



Asynchronous vs. 
Nonblocking

• DMA is asynchronous

• Asynchronous is still all or nothing, like a 
typical synchronous blocking I/O

• Nonblocking can get partial results

• Note: Wikipedia lies

Tuesday, November 15, 11



I/O Calls

Synchronous Asynchronous

Blocking Common Depends...

Nonblocking Nonsensical Possible

Tuesday, November 15, 11



But I/O is still slow...

Tuesday, November 15, 11



Caching

• Idea: Do as much “I/O” in memory as 
possible

file = open( fileName, O_RDWR );
read( file, buffer, 50 );
... // more code that changes buffer
lseek( file, 0, SEEK_SET );
write( file, buffer, 50 );
close( file )

Tuesday, November 15, 11



Caching

• Massive performance gains possible

• Real systems use this all the time

• Can be quite complex

Tuesday, November 15, 11



UNIX Semantics

• A write() is immediately available to 
anything that calls read()

• How does this work with caching?

Tuesday, November 15, 11



Consistency

• Cache is by definition a copy of the actual 
resource

• Any access to that resource must behave as 
if caching is not being performed

• They will be out of sync, but they cannot 
look out of sync

Tuesday, November 15, 11



Example Revisited

file = open( fileName, O_RDWR );
read( file, buffer, 50 );
... // more code that changes buffer
lseek( file, 0, SEEK_SET );
write( file, buffer, 50 );
strcpy( buffer, “Poisoned buffer” );
close( file )

• How does the OS handle this?

Tuesday, November 15, 11



The face of I/O

Tuesday, November 15, 11



Variation

Tuesday, November 15, 11



Variation

• “I/O” is extremely broad

• ...yet we try to make it fit into a consistent 
interface

• Major differences in OSes are often seen in 
how they treat I/O

Tuesday, November 15, 11



Broad Classes

• Character based: One character at a time is 
manipulated

• Examples: keyboards, mice, network cards

• Block based: Blocks of characters are 
manipulated at a time

• Examples: Hard drives, flash drives

Tuesday, November 15, 11



Broad Classes

• Some manage not to fit into even these

• Example: tape drives

• A seek can take a long time - impractical 
under essentially any circumstance

• Character devices have no notion of 
seeking

• However, data is stored in blocks...

Tuesday, November 15, 11



Floppy Drives

• Often used the same interface as tape 
drives

• More naturally a block device

Tuesday, November 15, 11



Responding to I/O

• Interrupts or polling can be used

• Some support both

• Which is best depends on usage scenario

• Polling makes little sense for hard drives - 
why?

• Interrupts are not usually used for mice - 
why?

Tuesday, November 15, 11



I/O Space

• I/O devices often have a limited amount of 
space they can work with internally

• If the OS fails to respond before this space 
fills, data can be lost

• Example: keyboards

Tuesday, November 15, 11



Buffering

• Buffer: a place in memory to put this data

• Not *quite* the same as a cache

• Not a copy

• Note that a cache can also be a buffer, 
but a buffer is by definition not a cache

Tuesday, November 15, 11


