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Overview

• Exams

• Interrupt priority

• Direct memory access (DMA)

• Different kinds of I/O calls

• Caching

• What I/O looks like
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Exams
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Interrupt Priority

• Process 1 makes an I/O request

• Process 2 makes an I/O request

• While setting up Process 2’s request, 
Process 1’s request finishes
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Interrupt Priority
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Prioritizing

• While servicing one interrupt, another 
interrupt occurred

• Question: should we finish our ISR or allow 
the other ISR to run immediately?
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Prioritizing

• Which ISRs preempt which is potentially 
complex

• Preemption within the kernel can be 
complex

• Similar issues as with process preemption
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Performing I/O

• “I/O takes forever, so while we do I/O, we 
schedule something else.”

• ...so how do we do I/O if we’re doing 
something else?
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DMA Controller
• Answer: special hardware

• Dedicated processor just for handling I/O

• The processor directly manipulates 
memory and the I/O device, bypassing the 
CPU
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DMA Messages

• Read X bytes starting at Y part of disk into 
Z part of memory

• Write X bytes to disk starting at part Y of 
disk from Z part of memory
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DMA in Action
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DMA in Action
Times 3-4 Time 5
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DMA Issues

• Question: How does this work in with 
virtual memory?

• Question: How does this work with 
swappable pages?
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I/O Types
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Blocking/Nonblocking

• Blocking: wait until I/O is complete until 
returning

• Nonblocking: on each call, return what has 
been done so far
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Nonblocking

• Question: Why is this useful?

• Consider a program that gets the sum of 
integers from a 1 GB file
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Synchronous/
Asynchronous

• Synchronous: wait for I/O to complete 
before returning

• Asynchronous: do not wait for I/O to 
complete before returning

• Ideally, there is a callback to signal when 
the I/O is complete
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Asynchronous vs. 
Nonblocking

• DMA is asynchronous

• Asynchronous is still all or nothing, like a 
typical synchronous blocking I/O

• Nonblocking can get partial results

• Note: Wikipedia lies
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I/O Calls

Synchronous Asynchronous

Blocking Common Depends...

Nonblocking Nonsensical Possible
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But I/O is still slow...
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Caching

• Idea: Do as much “I/O” in memory as 
possible

file = open( fileName, O_RDWR );
read( file, buffer, 50 );
... // more code that changes buffer
lseek( file, 0, SEEK_SET );
write( file, buffer, 50 );
close( file )
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Caching

• Massive performance gains possible

• Real systems use this all the time

• Can be quite complex
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UNIX Semantics

• A write() is immediately available to 
anything that calls read()

• How does this work with caching?
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Consistency

• Cache is by definition a copy of the actual 
resource

• Any access to that resource must behave as 
if caching is not being performed

• They will be out of sync, but they cannot 
look out of sync
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Example Revisited

file = open( fileName, O_RDWR );
read( file, buffer, 50 );
... // more code that changes buffer
lseek( file, 0, SEEK_SET );
write( file, buffer, 50 );
strcpy( buffer, “Poisoned buffer” );
close( file )

• How does the OS handle this?
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The face of I/O
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Variation
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Variation

• “I/O” is extremely broad

• ...yet we try to make it fit into a consistent 
interface

• Major differences in OSes are often seen in 
how they treat I/O
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Broad Classes

• Character based: One character at a time is 
manipulated

• Examples: keyboards, mice, network cards

• Block based: Blocks of characters are 
manipulated at a time

• Examples: Hard drives, flash drives
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Broad Classes

• Some manage not to fit into even these

• Example: tape drives

• A seek can take a long time - impractical 
under essentially any circumstance

• Character devices have no notion of 
seeking

• However, data is stored in blocks...
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Floppy Drives

• Often used the same interface as tape 
drives

• More naturally a block device
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Responding to I/O

• Interrupts or polling can be used

• Some support both

• Which is best depends on usage scenario

• Polling makes little sense for hard drives - 
why?

• Interrupts are not usually used for mice - 
why?
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I/O Space

• I/O devices often have a limited amount of 
space they can work with internally

• If the OS fails to respond before this space 
fills, data can be lost

• Example: keyboards
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Buffering

• Buffer: a place in memory to put this data

• Not *quite* the same as a cache

• Not a copy

• Note that a cache can also be a buffer, 
but a buffer is by definition not a cache
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