
Common
Misunderstandings from

Exam 1 Material
Kyle Dewey

Sunday, July 27, 14

Stack and Heap
Allocation with

Pointers

Sunday, July 27, 14

char c = ‘c’;
char* p1 = malloc(sizeof(char));
char** p2 = &p1;

• Where is c allocated?

• Where is p1 itself allocated?

• Where is what p1 points to allocated?

• Where is p2 itself allocated?

• Where is what p2 points to allocated?

• Nearly everyone got this one wrong

Sunday, July 27, 14

Key to Solving

• Draw out a memory diagram

• The following slides go through this
process

Sunday, July 27, 14

char c = ...;

• c is a local variable, and local variables are
allocated on the stack

• The value is initially undefined

Stack

Heap

c
???

Sunday, July 27, 14

char c = ‘c’;

• Any time = is used, it assigns to that place
directly, so since c is on the stack, ‘c’ gets
put into that place on the stack

Stack

Heap

c
‘c’

Sunday, July 27, 14

char c = ‘c’;
char* p1 = ...;

Stack

Heap

c
‘c’

• p1 is a local variable, and local variables are
allocated on the stack

• The value is initially undefined

p1
???

Sunday, July 27, 14

char c = ‘c’;
... = malloc(sizeof(char));

Stack

Heap

c
‘c’

• malloc allocates something on the heap

• The value is initially undefined

p1
???

sizeof(char)
???

Sunday, July 27, 14

char c = ‘c’;
char* p1 = malloc(sizeof(char));

Stack

Heap

c
‘c’

• = puts something in place directly

• This means p1 holds a pointer to the space
allocated on the heap

p1
addr

sizeof(char)
???

Sunday, July 27, 14

char c = ‘c’;
char* p1 = malloc(sizeof(char));
char** p2 = ...;

Stack

Heap

c
‘c’

• p2 is a local variable, and local variables are
allocated on the stack

• The value is initially undefined

p1
addr

sizeof(char)
???

p2
???

Sunday, July 27, 14

char c = ‘c’;
char* p1 = malloc(sizeof(char));
char** p2 = &p1;

Stack

Heap

c
‘c’

• = puts something in place directly

• The & operator creates a pointer to p1

p1
addr

sizeof(char)
???

p2
addr

Sunday, July 27, 14

• Where is c allocated?

• Where is p1 itself allocated?

• Where is what p1 points to allocated?

• Where is p2 itself allocated?

• Where is what p2 points to allocated?

Stack

Heap

c
‘c’

p1
addr

sizeof(char)
???

p2
addr

Sunday, July 27, 14

main’s return value

Sunday, July 27, 14

main’s Return Value
int main() {
 return 0;
}

• What is returned is a code to the operating
system

• It is not part of the output

• By convention, 0 means “everything ok”,
and non-zero is an error code of some sort

Sunday, July 27, 14

When Destructors are
Called

Sunday, July 27, 14

Destructor Call

• The destructor for an object is called
automatically right before the object is
deallocated

• Which two ways can memory be
deallocated? (Hint: which two ways can
we allocate memory?)

Sunday, July 27, 14

Destructor Call

• The destructor for an object is called
automatically right before the object is
deallocated

• Which two ways can memory be
deallocated?

• Stack: function return

• Heap: delete

Sunday, July 27, 14

void test() {
 Des d(1);
 ...; // some other code
}

int main() {
 Des* p = new Des(0);
 test();
 delete p;
 return 0;
}

Sunday, July 27, 14

void test() {
 Des d(1); // allocates d on stack
 ...; // some other code
 // d is deallocated off of stack
 // right before test returns
}

int main() {
 // allocates on heap below
 Des* p = new Des(0);
 test();
 delete p; // deallocated off heap
 return 0;
}

Sunday, July 27, 14

void test() {
 Des d(1); // allocates d on stack
 ...; // some other code
 // d is deallocated off of stack
 // right before test returns
 // destructor called
}

int main() {
 // allocates on heap below
 Des* p = new Des(0);
 test();
 delete p; // deallocated off heap
 // destructor called
 return 0;
}

Sunday, July 27, 14

bool and Boolean
Expressions

Sunday, July 27, 14

Booleans

• C++ has a special bool type, which
permits values of true and false

• Something is either less than something
else or isn’t: bool is perfect here

bool firstLessThanSecond(int x, int y);

Sunday, July 27, 14

Boolean Expressions
• Tests (e.g., x < y) already return bool

• There is no need to add another
conditional to it

bool firstLessThanSecond(int x, int y) {
 // if isn’t needed here
 if (x < y) {
 return true;
 } else {
 return false;
 }
}
Sunday, July 27, 14

Boolean Expressions
• Tests (e.g., x < y) already return bool

• There is no need to add another
conditional to it

bool firstLessThanSecond(int x, int y) {
 // if isn’t needed here
 return x < y;
}

Sunday, July 27, 14

public / private

Sunday, July 27, 14

public / private
• A particular class has access to all its own
private members

• This includes

• All methods

• Constructors

• Destructors

• Methods that take in other
instances of the same class

Sunday, July 27, 14

class Square {
 public:
 // constructor
 // other methods

 bool lessThan(const Square& o) const {
 return size < o.size;
 }

 private:
 int size;
};

Sunday, July 27, 14

class Square {
 public:
 // constructor
 // other methods

 bool lessThan(const Square& o) const {
 return size < o.size;
 }

 private:
 int size;
};

Access ok: size is an instance variable of Square, and
lessThan is a method on Square.

Sunday, July 27, 14

class Square {
 public:
 // constructor
 // other methods

 bool lessThan(const Square& o) const {
 return size < o.size;
 }

 private:
 int size;
};

Access ok: size is an instance variable of Square,
lessThan is a method on Square, and o is an instance

of Square.
Sunday, July 27, 14

insertAtSecond /
removeFromSecond

Sunday, July 27, 14

insertAtSecond /
removeFromSecond
• Memory diagrams are very helpful here

• Loops aren’t needed (can just grab the
first, second, and third elements directly)

• No need to implement your own length
method

• Length 0: head == NULL

• Length 1: head != NULL &&
head->getNext() == NULL

Sunday, July 27, 14

Command-line
Arguments

Sunday, July 27, 14

int main(int argc, char** argv) {
 ...
 return 0;
}

• argc holds the number of arguments,
including how the command was invoked

• argv holds the actual arguments

Sunday, July 27, 14

int main(int argc, char** argv) {
 ...
 return 0;
}

Command: ./a.out

argc: 1
argv: { “./a.out” }

Sunday, July 27, 14

int main(int argc, char** argv) {
 ...
 return 0;
}

Command: ./a.out foo

argc: 2
argv: { “./a.out”, “foo” }

Sunday, July 27, 14

int main(int argc, char** argv) {
 ...
 return 0;
}

Command: ./a.out foo bar

argc: 3
argv: { “./a.out”, “foo”, “bar” }

Sunday, July 27, 14

