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Overview

• C Review

• Multiple files

• File I/O

• Command-line arguments

• Pointers

• Allocation
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Multiple Files
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Situation 1

• You have written a library of routines for 
manipulating images

• You want to share these with other 
programmers

• How can we go about this?
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Situation 2

• You are at Google working on their search 
engine

• The search engine is divided into these 
components:

• An external interface

• A database of various webpages

• A sophisticated search algorithm

• How can all parties work together?
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Situation 3

• You are working on a large project, and 
putting everything in one file leads to a 
mess

• 10s of thousands of lines of code

• By the time you’re at line 2,000, you can’t 
remember what 200 did

• Editing is a nightmare
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Solution: Multiple Files

• Splitting code up into multiple files allows 
for easier collaboration, and helps hide 
details from us

• Generally, the fewer details you must 
know, the better

• Mark of good software design
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Header Files

• In C/C++, this is accomplished via header 
files

• A header file defines an interface

• Code can include other header files to gain 
access to the interfaces

• The interfaces are implemented in separate 
files
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Header Files Example
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Basic File I/O
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Question

• Say a program is not permitted to read or 
write to files, the terminal, the network, or 
any other source

• Can the resulting program do anything 
useful?
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I/O (Input/Output)

• The way programs interact with the 
outside world

• Without it, programs are simply things that 
turn computers into space heaters
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File I/O

• When working with files, we must open a 
file before we can read from it

• When we are done with a file, we must 
close it

• What happens if we forget to close it?

Tuesday, June 24, 14



Reading from a File

• Can read one character at a time

• See cat1.c, which uses fgetc for this
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Reading from a File

• Can also read multiple characters at a time

• See cat2.c, which uses fgets for this
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Questions

• What extra bit is needed to read multiple 
characters at a time?

• What happen if we get this extra bit 
wrong?

• Why read multiple characters at a time?
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Command Line 
Arguments
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UNIX Commands

• We have seen a bunch of UNIX commands 
used at this point

• How exactly do these programs interpret 
what they are supposed to do?

• How does emacs know which file to 
open?

• How does cd know which directory to 
go to?
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Command Line 
Arguments

• A standard way to tell programs what and 
how to do

• In C/C++, we can get access to the 
command line arguments via the 
parameters to the main function

Tuesday, June 24, 14



Command Line 
Arguments Example

(echo.c)
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Command Line 
Arguments

• What is argc?  What is it set to?

• What is argv?  What is it set to?
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Pointers
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Question

• What is a pointer?

• Conceptually?

• In reality (the value held)?

• What can pointers point to?
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What is Printed?
int x = 5;
int y = 7;
int* p = &x;

if (*p == 5) {
  *p = 8;
  p = &y;
}

*p = 1;

printf(“%d %d”, x, y);
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Question

• Why ever use a pointer over a value?
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Answers

• Why ever use a pointer over a value?

• Copying around values can get expensive

• Allows for indirect access to other 
program portions

• You do not know how big the value is it 
points to (dynamic allocation)
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Question

• Why use a value over a pointer?

Tuesday, June 24, 14



Answers

• Why use a value over a pointer?

• Values are generally easier to reason 
about

• Sometimes you need a copy
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Pointers Versus Arrays

Tuesday, June 24, 14



Pointers Versus Arrays
• For a single-dimensional array, they are 

effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

5 6 7Value

Address 0 4 8

arr

0

12

pVariable
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Pointers Versus Arrays
• For a single-dimensional array, they are 

effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

5 6 7Value

Address 0 4 8

arr

0

12

pVariable

Offsets?
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Pointers Versus Arrays
• For a single-dimensional array, they are 

effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

5 6 7Value

Address 0 4 8

arr

0

12

pVariable
Could be just about anywhere
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Memory Diagram

• A memory diagram for the same program:

int arr[3] = {5, 6, 7};
int* p = arr;

5 6 7

arrp
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Pointers Versus Arrays

• You can add a value to a pointer to 
increment (or decrement) that many places 
in memory
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Pointers Versus Arrays
int arr[] = { 1, 2, 3, 4 };

1

2

3

4

Value
Memory
Location

0

4

8

12

arr

(holds memory 
location 0)

points to
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Pointers Versus Arrays

Value
Memory
Location

int arr[] = { 1, 2, 3, 4 };
arr + 1

arr

+

1

1

2

3

4

0

4

8

12

0 4

4

1 * sizeof( int )
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Pointers Versus Arrays

• We can do this:

int arr[] = { 1, 2, 3, 4 };
*(arr + 1)

• We can also use the equivalent boxed 
notation:

int arr[] = { 1, 2, 3, 4 };
arr[ 1 ]
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Pointers Versus Arrays

• Still some differences

int arr1[3] = {1, 2, 3};
int arr2[3] = {5, 6, 7};
arr1 = arr2; // not legal

• Generally, pointers can act like arrays, but 
arrays cannot act like pointers
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void*
(Void Pointers)
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void*

• Like any other pointer, it refers to some 
memory address

• However, it has no associated type, and 
cannot be dereferenced directly

• Question: why can’t it be dereferenced?
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No Dereferencing
void* p = 2;
*p; // get what’s at p

0x21 0x00 0x01 0x52 0xF0 0xAB 0x2CValue

Address 0 1 2 3 4 5 6

• void* is a value without context

• Without context, there is no way to know how to 
interpret the value (int? char? double?)
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How to Use a void*

• A void* cannot be dereferenced directly

• However, it is possible to cast a void* to 
another type

char* str = “moo”;
void* p = str;
printf( “%s\n”, (char*)p );
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How to Use a void*

• A void* also coerces into other pointer 
types

char* str = “moo”;
void* p = str;
char* str2 = p; // no errors
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Caveat
• A void* also coerces into other pointer 

types

• The compiler will trust you blindly

char* str = “moo”;
void* p = str;

// no compiler errors, but
// this is probably not what
// is desired
int* nums = p; 
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Why a void*?

• Allows for generic data structures

• A list of ints looks a lot like a list of 
chars

• Can refer to some block of memory 
without context

• Up next: why anyone would want to do 
that
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Dynamic Memory 
Allocation
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Motivation

• We want to read in a dictionary of words

• Before reading it in:

• We don’t know how many words there 
are

• We don’t know how big each word is

apple
banana
pear

<<empty>> aardvark
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Possible Solution

• Allocate the maximum amount you could 
ever need

• Question: why is this generally not a good 
solution?  (2 reasons)

// 1000 words max with
// 100 characters max per word
char dictionary[1000][100];
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Problems

• Most things do not have a good “maximum” 
you can get a grasp of

• Your program always needs the maximum 
amount of memory, and usually the vast 
majority is completely wasted
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What is Desired

• A way to tell the computer to give a 
certain amount of memory to a program as 
it runs

• Only what is explicitly requested is 
allocated
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Dynamic Memory 
Allocation

• Dynamic: as the program runs

• Memory allocation: set aside memory
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 malloc

• The most generic way to allocate memory

• Takes the number of bytes to allocate

• Returns a void* to the block of memory 
allocated

// size_t is an integral defined
// elsewhere
void* malloc( size_t numBytes );
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Using malloc
• The sizeof operator comes in handy

• Returns an integral size as a size_t

• For example: allocate room for 50 integers 
dynamically:

// dynamically
int* nums1;
nums1 = malloc( sizeof( int ) * 50 );

int nums2[ 50 ]; // statically
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Importance
• Static allocation can only be done with 

constants

• Dynamic allocation can be done with 
variables

int numToAllocate;
scanf( “%i”, &numToAllocate );
int* nums = 
  malloc(sizeof( int ) * numToAllocate);
int nums2[ numToAllocate ]; // ERROR
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Memory Contents

• The contents of the memory allocated by 
malloc is undefined

• You will need to initialize it yourself with a 
loop (or by using the memset function)
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free
• Once we are done using a block of 

memory, call free on it

• If a block is never freed, it is called a 
memory leak

• Memory is still allocated but wasted

int* nums;
nums = malloc( sizeof( int ) * 50 );
...
// done with nums
free( nums );
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malloc1.c, 
malloc2.c
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On Calling free

• With static allocation, the compiler handles 
deallocation for you

• With dynamic allocation, you must call 
free yourself

• The simple act of knowing when to call 
free can be hard

• In general, mathematically unsolvable!
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