
CS24 Week 1 Lecture 2
Kyle Dewey

Tuesday, June 24, 14

Overview

• C Review

• Multiple files

• File I/O

• Command-line arguments

• Pointers

• Allocation

Tuesday, June 24, 14

Multiple Files

Tuesday, June 24, 14

Situation 1

• You have written a library of routines for
manipulating images

• You want to share these with other
programmers

• How can we go about this?

Tuesday, June 24, 14

Situation 2

• You are at Google working on their search
engine

• The search engine is divided into these
components:

• An external interface

• A database of various webpages

• A sophisticated search algorithm

• How can all parties work together?
Tuesday, June 24, 14

Situation 3

• You are working on a large project, and
putting everything in one file leads to a
mess

• 10s of thousands of lines of code

• By the time you’re at line 2,000, you can’t
remember what 200 did

• Editing is a nightmare

Tuesday, June 24, 14

Solution: Multiple Files

• Splitting code up into multiple files allows
for easier collaboration, and helps hide
details from us

• Generally, the fewer details you must
know, the better

• Mark of good software design

Tuesday, June 24, 14

Header Files

• In C/C++, this is accomplished via header
files

• A header file defines an interface

• Code can include other header files to gain
access to the interfaces

• The interfaces are implemented in separate
files

Tuesday, June 24, 14

Header Files Example

Tuesday, June 24, 14

Basic File I/O

Tuesday, June 24, 14

Question

• Say a program is not permitted to read or
write to files, the terminal, the network, or
any other source

• Can the resulting program do anything
useful?

Tuesday, June 24, 14

I/O (Input/Output)

• The way programs interact with the
outside world

• Without it, programs are simply things that
turn computers into space heaters

Tuesday, June 24, 14

File I/O

• When working with files, we must open a
file before we can read from it

• When we are done with a file, we must
close it

• What happens if we forget to close it?

Tuesday, June 24, 14

Reading from a File

• Can read one character at a time

• See cat1.c, which uses fgetc for this

Tuesday, June 24, 14

Reading from a File

• Can also read multiple characters at a time

• See cat2.c, which uses fgets for this

Tuesday, June 24, 14

Questions

• What extra bit is needed to read multiple
characters at a time?

• What happen if we get this extra bit
wrong?

• Why read multiple characters at a time?

Tuesday, June 24, 14

Command Line
Arguments

Tuesday, June 24, 14

UNIX Commands

• We have seen a bunch of UNIX commands
used at this point

• How exactly do these programs interpret
what they are supposed to do?

• How does emacs know which file to
open?

• How does cd know which directory to
go to?

Tuesday, June 24, 14

Command Line
Arguments

• A standard way to tell programs what and
how to do

• In C/C++, we can get access to the
command line arguments via the
parameters to the main function

Tuesday, June 24, 14

Command Line
Arguments Example

(echo.c)

Tuesday, June 24, 14

Command Line
Arguments

• What is argc? What is it set to?

• What is argv? What is it set to?

Tuesday, June 24, 14

Pointers

Tuesday, June 24, 14

Question

• What is a pointer?

• Conceptually?

• In reality (the value held)?

• What can pointers point to?

Tuesday, June 24, 14

What is Printed?
int x = 5;
int y = 7;
int* p = &x;

if (*p == 5) {
 *p = 8;
 p = &y;
}

*p = 1;

printf(“%d %d”, x, y);

Tuesday, June 24, 14

Question

• Why ever use a pointer over a value?

Tuesday, June 24, 14

Answers

• Why ever use a pointer over a value?

• Copying around values can get expensive

• Allows for indirect access to other
program portions

• You do not know how big the value is it
points to (dynamic allocation)

Tuesday, June 24, 14

Question

• Why use a value over a pointer?

Tuesday, June 24, 14

Answers

• Why use a value over a pointer?

• Values are generally easier to reason
about

• Sometimes you need a copy

Tuesday, June 24, 14

Pointers Versus Arrays

Tuesday, June 24, 14

Pointers Versus Arrays
• For a single-dimensional array, they are

effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

5 6 7Value

Address 0 4 8

arr

0

12

pVariable

Tuesday, June 24, 14

Pointers Versus Arrays
• For a single-dimensional array, they are

effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

5 6 7Value

Address 0 4 8

arr

0

12

pVariable

Offsets?

Tuesday, June 24, 14

Pointers Versus Arrays
• For a single-dimensional array, they are

effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

5 6 7Value

Address 0 4 8

arr

0

12

pVariable
Could be just about anywhere

Tuesday, June 24, 14

Memory Diagram

• A memory diagram for the same program:

int arr[3] = {5, 6, 7};
int* p = arr;

5 6 7

arrp

Tuesday, June 24, 14

Pointers Versus Arrays

• You can add a value to a pointer to
increment (or decrement) that many places
in memory

Tuesday, June 24, 14

Pointers Versus Arrays
int arr[] = { 1, 2, 3, 4 };

1

2

3

4

Value
Memory
Location

0

4

8

12

arr

(holds memory
location 0)

points to

Tuesday, June 24, 14

Pointers Versus Arrays

Value
Memory
Location

int arr[] = { 1, 2, 3, 4 };
arr + 1

arr

+

1

1

2

3

4

0

4

8

12

0 4

4

1 * sizeof(int)
Tuesday, June 24, 14

Pointers Versus Arrays

• We can do this:

int arr[] = { 1, 2, 3, 4 };
*(arr + 1)

• We can also use the equivalent boxed
notation:

int arr[] = { 1, 2, 3, 4 };
arr[1]

Tuesday, June 24, 14

Pointers Versus Arrays

• Still some differences

int arr1[3] = {1, 2, 3};
int arr2[3] = {5, 6, 7};
arr1 = arr2; // not legal

• Generally, pointers can act like arrays, but
arrays cannot act like pointers

Tuesday, June 24, 14

void*
(Void Pointers)

Tuesday, June 24, 14

void*

• Like any other pointer, it refers to some
memory address

• However, it has no associated type, and
cannot be dereferenced directly

• Question: why can’t it be dereferenced?

Tuesday, June 24, 14

No Dereferencing
void* p = 2;
*p; // get what’s at p

0x21 0x00 0x01 0x52 0xF0 0xAB 0x2CValue

Address 0 1 2 3 4 5 6

• void* is a value without context

• Without context, there is no way to know how to
interpret the value (int? char? double?)

Tuesday, June 24, 14

How to Use a void*

• A void* cannot be dereferenced directly

• However, it is possible to cast a void* to
another type

char* str = “moo”;
void* p = str;
printf(“%s\n”, (char*)p);

Tuesday, June 24, 14

How to Use a void*

• A void* also coerces into other pointer
types

char* str = “moo”;
void* p = str;
char* str2 = p; // no errors

Tuesday, June 24, 14

Caveat
• A void* also coerces into other pointer

types

• The compiler will trust you blindly

char* str = “moo”;
void* p = str;

// no compiler errors, but
// this is probably not what
// is desired
int* nums = p;

Tuesday, June 24, 14

Why a void*?

• Allows for generic data structures

• A list of ints looks a lot like a list of
chars

• Can refer to some block of memory
without context

• Up next: why anyone would want to do
that

Tuesday, June 24, 14

Dynamic Memory
Allocation

Tuesday, June 24, 14

Motivation

• We want to read in a dictionary of words

• Before reading it in:

• We don’t know how many words there
are

• We don’t know how big each word is

apple
banana
pear

<<empty>> aardvark

Tuesday, June 24, 14

Possible Solution

• Allocate the maximum amount you could
ever need

• Question: why is this generally not a good
solution? (2 reasons)

// 1000 words max with
// 100 characters max per word
char dictionary[1000][100];

Tuesday, June 24, 14

Problems

• Most things do not have a good “maximum”
you can get a grasp of

• Your program always needs the maximum
amount of memory, and usually the vast
majority is completely wasted

Tuesday, June 24, 14

What is Desired

• A way to tell the computer to give a
certain amount of memory to a program as
it runs

• Only what is explicitly requested is
allocated

Tuesday, June 24, 14

Dynamic Memory
Allocation

• Dynamic: as the program runs

• Memory allocation: set aside memory

Tuesday, June 24, 14

 malloc

• The most generic way to allocate memory

• Takes the number of bytes to allocate

• Returns a void* to the block of memory
allocated

// size_t is an integral defined
// elsewhere
void* malloc(size_t numBytes);

Tuesday, June 24, 14

Using malloc
• The sizeof operator comes in handy

• Returns an integral size as a size_t

• For example: allocate room for 50 integers
dynamically:

// dynamically
int* nums1;
nums1 = malloc(sizeof(int) * 50);

int nums2[50]; // statically

Tuesday, June 24, 14

Importance
• Static allocation can only be done with

constants

• Dynamic allocation can be done with
variables

int numToAllocate;
scanf(“%i”, &numToAllocate);
int* nums =
 malloc(sizeof(int) * numToAllocate);
int nums2[numToAllocate]; // ERROR

Tuesday, June 24, 14

Memory Contents

• The contents of the memory allocated by
malloc is undefined

• You will need to initialize it yourself with a
loop (or by using the memset function)

Tuesday, June 24, 14

free
• Once we are done using a block of

memory, call free on it

• If a block is never freed, it is called a
memory leak

• Memory is still allocated but wasted

int* nums;
nums = malloc(sizeof(int) * 50);
...
// done with nums
free(nums);

Tuesday, June 24, 14

malloc1.c,
malloc2.c

Tuesday, June 24, 14

On Calling free

• With static allocation, the compiler handles
deallocation for you

• With dynamic allocation, you must call
free yourself

• The simple act of knowing when to call
free can be hard

• In general, mathematically unsolvable!

Tuesday, June 24, 14

