CS24 Week | Lecture 2

Kyle Dewey

Overview

® C Review

Multiple files

File I/O

Command-line arguments
Pointers

Allocation

Multiple Files

Situation |

® You have written a library of routines for
manipulating images

® You want to share these with other
programmers

® How can we go about this!?

Tuesday, June 24, 14

Situation 2

® You are at Google working on their search
engine

® The search engine is divided into these
components:

® An external interface
® A database of various webpages
® A sophisticated search algorithm

® How can all parties work together?

Tuesday, June 24, 14

Situation 3

® You are working on a large project, and
putting everything in one file leads to a
mess

® |Os of thousands of lines of code

® By the time you're at line 2,000, you can’t
remember what 200 did

® Editing is a nightmare

Solution: Multiple Files

® Splitting code up into multiple files allows
for easier collaboration, and helps hide
details from us

® Generally, the fewer details you must
know, the better

® Mark of good software design

Header Files

In C/C++, this is accomplished via header
files

A header file defines an interface

Code can include other header files to gain
access to the interfaces

The interfaces are implemented in separate
files

Header Files Example

Basic File |/O

Question

® Say a program is not permitted to read or
write to files, the terminal, the network, or
any other source

® Can the resulting program do anything
useful?

Tuesday, June 24, 14

/O (Input/Output)

® The way programs interact with the
outside world

® Without it, programs are simply things that
turn computers into space heaters

File I/O

® When working with files, we must ocpen a
file before we can read from it

® VWhen we are done with a file, we must
close it

® What happens if we forget to close it?

Tuesday, June 24, 14

Reading from a File

® Can read one character at a time

® See catl.c,which uses fgetc for this

Reading from a File

® Can also read multiple characters at a time

® See cat?2.c,which uses fgets for this

Tuesday, June 24, 14

Questions

® VWhat extra bit is needed to read multiple
characters at a time!

® What happen if we get this extra bit
wrong?

® Why read multiple characters at a time!

Tuesday, June 24, 14

Command Line
Arguments

UNIX Commands

® VVe have seen a bunch of UNIX commands
used at this point

® How exactly do these programs interpret
what they are supposed to do?

® How does emacs know which file to
open?

® How does cd know which directory to
go to!

Command Line
Arguments

® A standard way to tell programs what and
how to do

® |n C/C++, we can get access to the
command line arguments via the
parameters to the main function

Command Line
Arguments Example
(echo.c)

Command Line
Arguments

® Whatis argc? What is it set to?

® Whatis argv! What is it set to?

Pointers

Question

® What is a pointer?
® Conceptually!?
® |n reality (the value held)?

® VWhat can pointers point to?

What is Printed?

int x

]
~J U7

printf (“sd %d”, x, V);

Question

® Why ever use a pointer over a value!

Tuesday, June 24, 14

Answers

® Why ever use a pointer over a value!
® Copying around values can get expensive

® Allows for indirect access to other
program portions

® You do not know how big the value is it
points to (dynamic allocation)

Tuesday, June 24, 14

Question

® Why use a value over a pointer?

Tuesday, June 24, 14

Answers

® Why use a value over a pointer?

® Values are generally easier to reason
about

® Sometimes you need a copy

Tuesday, June 24, 14

Pointers Versus Arrays

Pointers Versus Arrays

® For a single-dimensional array, they are
effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

Variable arr o

Value S

Address 0 4 8 12

Pointers Versus Arrays

® For a single-dimensional array, they are

effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

Variable

Value

Address

arr o

S

0 4 3 12

Offsets?

Pointers Versus Arrays

® For a single-dimensional array, they are
effectively the same

int arr[3] = {5, 6, 7};
int* p = arr;

Could be just about anywhere
Variable arr 0

Value 5 0

Address 0 4 8 12

Memory Diagram

® A memory diagram for the same program:

int arr[3] = {5, 6, 7};
int* p = arr;

Pointers Versus Arrays

® You can add a value to a pointer to
increment (or decrement) that many places
In memory

Pointers Versus Arrays

int arr[] = { 1, 2, 3, 4 };

Memory
Value | ocation
points to
arr 0
(holds memory 4
location 0)
8

Pointers Versus Arrays

int arr[] = { 1, 2, 3, 4 };
arr + 1

Memory
Location

Value

12

1 * sizeof(1nt)

Pointers Versus Arrays

® Ve can do this:

int arr[] = { 1, 2, 3, 4 };

*(arr + 1)

® We can also use the equivalent boxed
notation:

int arr[] = { 1, 2, 3, 4 };
arr|[1 |

Pointers Versus Arrays

® Still some differences

int arrl[3] = {1, 2, 3};
int arr2[3] = {5, 6, 7};
arrl = arr2; // not legal

® Generally, pointers can act like arrays, but
arrays cannot act like pointers

Tuesday, June 24, 14

vo1ld*

(Void Pointers)

vo1lid™*

® | ike any other pointer, it refers to some
memory address

® However, it has no associated type, and
cannot be dereferenced directly

® Question: why can’t it be dereferenced?

Tuesday, June 24, 14

No Dereferencing

vold* p = 2;
*v; // get what’s at p

Valuye O0x21 | 0x00 |1 0x01 | 0x52 | 0xFO | O0xAB | 0x2C

Address 0 | 2 3 4 5 6

® void~* is a value without context

® Without context, there is no way to know how to
interpret the value (int? char? double?)

Tuesday, June 24, 14

How to Use a void*

® A void* cannot be dereferenced directly

® However, it is possible to cast a void* to
another type

char* str = “moo”;
vold* p = str;
printf (“%s\n”, (char*)p);

Tuesday, June 24, 14

How to Use a void*

® A void* also coerces into other pointer

types
char* str = “moo”;
vold* p = str;

char* str2 = p; // no errors

Tuesday, June 24, 14

Caveat

® A void~* also coerces into other pointer
types

® The compiler will trust you blindly

char* str = “moo”;
vold* p = str;

// no compiler errors, but
// this i1s probably not what
// 1s desired

int* nums = p;

Tuesday, June 24, 14

Why a void*!

® Allows for generic data structures

® A list of ints looks a lot like a list of
chars

® Can refer to some block of memory
without context

® Up next: why anyone would want to do
that

Tuesday, June 24, 14

Dynamic Memory
Allocation

Motivation

® VWe want to read in a dictionary of words
® Before reading it in:

® We don’t know how many words there
are

® We don’t know how big each word is

apple
banana <<Lempty>> aardvark
pear

Tuesday, June 24, 14

Possible Solution

® Allocate the maximum amount you could

ever need

® Question: why is this generally not a good

//
//

solution? (2 reasons)

1000 words max with

100 characters max per word

char dictionary[1000] [100];

Tuesday, June 24, 14

Problems

® Most things do not have a good “maximum”
you can get a grasp of

® Your program always needs the maximum
amount of memory, and usually the vast
majority is completely wasted

Tuesday, June 24, 14

What is Desired

® A way to tell the computer to give a

certain amount of memory to a program as
It runs

® Only what is explicitly requested is
allocated

Tuesday, June 24, 14

Dynamic Memory
Allocation

® Dynamic: as the program runs

® Memory allocation: set aside memory

malloc

® The most generic way to allocate memory
® Takes the number of bytes to allocate

® Returns a void* to the block of memory
allocated

// size t is an integral defined
// elsewhere
vold* malloc(size t numBytes);

Tuesday, June 24, 14

Using malloc

® The sizeof operator comes in handy
® Returns an integral sizeasa size t

® For example: allocate room for 50 integers
dynamically:

// dynamically
int* numsl;
numsl = malloc(sizeof(i1nt) * 50);

int nums2[50]; // statically

Tuesday, June 24, 14

Importance

® Static allocation can only be done with
constants

® Dynamic allocation can be done with
variables

int numToAllocate;
scanf (“%1”, &numToAllocate);
int* nums =
malloc(sizeof (1nt) * numToAllocate);
int nums2[numToAllocate]; // ERROR

Tuesday, June 24, 14

Memory Contents

® The contents of the memory allocated by
malloc is undefined

® You will need to initialize it yourself with a
loop (or by using the memset function)

free

® Once we are done using a block of
memory, call free on it

® |f a block is never freed, it is called a
memory leak

® Memory is still allocated but wasted

1nt* nums;
nums = malloc(sizeof(1nt) * 50);

// done with nums
free(nums) ;

Tuesday, June 24, 14

mallocl.c,
malloc’Z.c

On Calling free

® With static allocation, the compiler handles
deallocation for you

® With dynamic allocation, you must call
free yourself

® The simple act of knowing when to call
free can be hard

® |n general, mathematically unsolvable!

Tuesday, June 24, 14

