
CS24 Week 2 Lecture 1
Kyle Dewey

Tuesday, July 1, 14

Overview

• C Review

• Void pointers

• Allocation

• structs

Tuesday, July 1, 14

void*
(Void Pointers)

Tuesday, July 1, 14

void*

• Like any other pointer, it refers to some
memory address

• However, it has no associated type, and
cannot be dereferenced directly

• Question: why can’t it be dereferenced?

Tuesday, July 1, 14

No Dereferencing
void* p = 2;
*p; // get what’s at p

0x21 0x00 0x01 0x52 0xF0 0xAB 0x2CValue

Address 0 1 2 3 4 5 6

• void* is a value without context

• Without context, there is no way to know how to
interpret the value (int? char? double?)

Tuesday, July 1, 14

How to Use a void*

• A void* cannot be dereferenced directly

• However, it is possible to cast a void* to
another type

char* str = “moo”;
void* p = str;
printf(“%s\n”, (char*)p);

Tuesday, July 1, 14

How to Use a void*

• A void* also coerces into other pointer
types

char* str = “moo”;
void* p = str;
char* str2 = p; // no errors

Tuesday, July 1, 14

Caveat
• A void* also coerces into other pointer

types

• The compiler will trust you blindly

char* str = “moo”;
void* p = str;

// no compiler errors, but
// this is probably not what
// is desired
int* nums = p;

Tuesday, July 1, 14

Why a void*?

• Allows for generic data structures

• A list of ints looks a lot like a list of
chars

• Can refer to some block of memory
without context

• Up next: why anyone would want to do
that

Tuesday, July 1, 14

Dynamic Memory
Allocation

Tuesday, July 1, 14

Motivation

• We want to read in a dictionary of words

• Before reading it in:

• We don’t know how many words there
are

• We don’t know how big each word is

apple
banana
pear

<<empty>> aardvark

Tuesday, July 1, 14

Possible Solution

• Allocate the maximum amount you could
ever need

• Question: why is this generally not a good
solution? (2 reasons)

// 1000 words max with
// 100 characters max per word
char dictionary[1000][100];

Tuesday, July 1, 14

Problems

• Most things do not have a good “maximum”
you can get a grasp of

• Your program always needs the maximum
amount of memory, and usually the vast
majority is completely wasted

Tuesday, July 1, 14

What is Desired

• A way to tell the computer to give a
certain amount of memory to a program as
it runs

• Only what is explicitly requested is
allocated

Tuesday, July 1, 14

Dynamic Memory
Allocation

• Dynamic: as the program runs

• Memory allocation: set aside memory

Tuesday, July 1, 14

 malloc

• The most generic way to allocate memory

• Takes the number of bytes to allocate

• Returns a void* to the block of memory
allocated

// size_t is an integral defined
// elsewhere
void* malloc(size_t numBytes);

Tuesday, July 1, 14

Using malloc
• The sizeof operator comes in handy

• Returns an integral size as a size_t

• For example: allocate room for 50 integers
dynamically:

// dynamically
int* nums1;
nums1 = malloc(sizeof(int) * 50);

int nums2[50]; // statically

Tuesday, July 1, 14

Question

• Why did we malloc with sizeof(int)
instead of sizeof(int*)?

• We assigned it to an int*, after all

int* nums1;
nums1 = malloc(sizeof(int) * 50);

Tuesday, July 1, 14

Answer

• We wanted room for 50 integers, not
integer pointers

int* nums1;
nums1 = malloc(sizeof(int) * 50);

Tuesday, July 1, 14

Importance
• Static allocation can only be done with

constants

• Dynamic allocation can be done with
variables

int numToAllocate;
scanf(“%i”, &numToAllocate);
int* nums =
 malloc(sizeof(int) * numToAllocate);
int nums2[numToAllocate]; // ERROR

Tuesday, July 1, 14

Memory Contents

• The contents of the memory allocated by
malloc is undefined

• You will need to initialize it yourself with a
loop (or by using the memset function)

Tuesday, July 1, 14

free
• Once we are done using a block of

memory, call free on it

• If a block is never freed, it is called a
memory leak

• Memory is still allocated but wasted

int* nums;
nums = malloc(sizeof(int) * 50);
...
// done with nums
free(nums);

Tuesday, July 1, 14

malloc1.c,
malloc2.c

Tuesday, July 1, 14

On Calling free

• With static allocation, the compiler handles
deallocation for you

• With dynamic allocation, you must call
free yourself

• The simple act of knowing when to call
free can be hard

• In general, mathematically unsolvable!

Tuesday, July 1, 14

Memory-Related Bugs

• What is wrong with this code?

int* foo() {
 int x = 7;
 return &x;
}

void bar() {
 int* p = foo();
 *p = 8;
}

Tuesday, July 1, 14

Memory-Related Bugs

• What is wrong with this code?

int* foo() {
 int x = 7;
 return &7;
}

void bar() {
 int* p = foo();
 *p = 8;
}

Space for x is
deallocated when
foo returns

Who knows
what
p points to?
(undefined) Called a “dangling pointer”

Tuesday, July 1, 14

Memory-Related Bugs

• What is wrong with this code?

void foo() {
 int* p = (int*)malloc(sizeof(int));
 *p = 7;
 free(p);
 *p = 8;
}

Tuesday, July 1, 14

Memory-Related Bugs

• What is wrong with this code?

void foo() {
 int* p = (int*)malloc(sizeof(int));
 *p = 7;
 free(p);
 *p = 8;
}

p is deallocated, then used.
Called a “use after free”

Tuesday, July 1, 14

Memory-Related Bugs

• What is wrong with this code?

void foo() {
 int* p = (int*)malloc(sizeof(int));
 *p = 7;
}

Tuesday, July 1, 14

Memory-Related Bugs

• What is wrong with this code?

void foo() {
 int* p = (int*)malloc(sizeof(int));
 *p = 7;
}

p is allocated, but never
deallocated. This is a memory leak.

Tuesday, July 1, 14

structs

Tuesday, July 1, 14

Question

• What is a struct?

Tuesday, July 1, 14

Basic Idea

• A way to group a fixed number of items,
of potentially different types

• Arrays: multiple items of the same type

• A way to create whole new datatypes

Tuesday, July 1, 14

Example
// defining
typedef struct _person {
 char* name;
 char* address;
 int phone;
} person;

...

// using
struct _person p1;
person p2, p3;

Tuesday, July 1, 14

Questions

• How do I access p’s phone field?

• How do I update p’s name field?

typedef struct _person {
 char* name;
 char* address;
 int phone;
} person;

...

person p;

Tuesday, July 1, 14

Answers

•p.phone

•p.name = NULL

typedef struct _person {
 char* name;
 char* address;
 int phone;
} person;

...

person p;

Tuesday, July 1, 14

Passing structs
• structs are copied when passed to

functions
struct blah { int x; };

void foo(struct blah b) { b.x = 7; }

int main() {
 struct blah p;
 p.x = 1;
 foo(p);
 printf("%d", p.x); // prints what?
 return 0;
}

Tuesday, July 1, 14

Passing structs
• structs are copied when passed to

functions
struct blah { int x; };

void foo(struct blah b) { b.x = 7; }

int main() {
 struct blah p;
 p.x = 1;
 foo(p);
 printf("%d", p.x); // prints 1
 return 0;
}

Tuesday, July 1, 14

Passing structs

• Often passed via pointer, since they tend to
be at least of moderate size

• Avoids copying

Tuesday, July 1, 14

Pointers to structs

• Dealing with pointers to structs can get
obnoxious because of parentheses

struct blah { int x; };

void foo(struct blah* b) {
 (*b).x = 7;
}

Tuesday, July 1, 14

Pointers to structs

• Can alleviate this with the equivalent arrow
operator

struct blah { int x; };

void foo(struct blah* b) {
 (*b).x = 7;
 b->x = 8;
}

Tuesday, July 1, 14

Question

• How might we allocate a struct?

Tuesday, July 1, 14

Answer

• How might we allocate a struct?

struct blah { int x; };

...

struct blah* b =
 malloc(sizeof(struct blah));

Tuesday, July 1, 14

Question

• What about an array of size n of
structs?

struct blah { int x; };

Tuesday, July 1, 14

Answer
• What about an array of size n of
structs?

struct blah { int x; };

...

struct blah* arr =
 malloc(sizeof(struct blah) * n);
arr[3].x = 7; // n > 3

Tuesday, July 1, 14

Putting it All Together
(If Time Allows)

Tuesday, July 1, 14

Problem Description

• We have a file in the following format:

3
Apple
Giraffe
Hover

• First line is the number of words, and
subsequent lines are words

• Each word is 20 characters or less
Tuesday, July 1, 14

Problem

• Read it into an array of type char** (an
array of strings)

• Dynamic allocation must be used

Tuesday, July 1, 14

Related Problem

• Read it into an array of type char* (a
single string)

• Dynamic allocation must be used

• How do we access individual strings?

Tuesday, July 1, 14

