
CS24 Week 2 Lecture 2
Kyle Dewey

Wednesday, July 2, 14

Overview

• Abstract data types

• Introduction to C++

• Minor C differences

• Object-oriented programming

• Objects

Wednesday, July 2, 14

Abstract Data Types

Wednesday, July 2, 14

High-Level Example

• You have chosen to drive from Santa
Barbara to Los Angeles

• You have a driver’s license

Wednesday, July 2, 14

Questions

• Are these first-priority concerns?

• The number of cylinders in the vehicle?

• The gas mileage?

• Manual or automatic transmission?

Wednesday, July 2, 14

Discussion

• Previous questions probably not first
concerns

• If it has a steering wheel, brakes, and a gas
pedal, it probably is just fine

• The implementation, that is, how the engine
works, is abstract

Wednesday, July 2, 14

Another Example

• We have a program that performs
arithmetic on some numbers (+, -, *, /)

• For basic correctness, how important is the
mechanism used to represent integers?

Wednesday, July 2, 14

Discussion

• Again, representation could vary

• One’s complement

• Two’s complement

• Binary-coded decimal

• Inductive definition

• Which representation chosen is not
absolutely critical, due to abstraction

Wednesday, July 2, 14

Abstract Data Types

• A way to abstract over data and the
operations on said data

• Intentionally hides detail away

Wednesday, July 2, 14

Question

• Why is hiding detail good? (Two big
answers)

Wednesday, July 2, 14

Answers

• Less information to keep track of

• Implementations can vary independently of
how they are used

• E.g., with a license, you can drive a wide
variety of vehicles

Wednesday, July 2, 14

Three Levels of ADTs

• There are three levels to an abstract data
type:

• Application/user level

• Logical/abstract level

• Implementation level

Wednesday, July 2, 14

Application/User Level

• Defines the problem domain

• What we need to do with it

• Examples?

Wednesday, July 2, 14

Application/User Level

• Defines the problem domain

• What we need to do with it

• Examples?

• Where we are driving to

• The arithmetic we need to perform

Wednesday, July 2, 14

Three Levels of ADTs

• There are three levels to an abstract data
type:

• Application/user level

• Logical/abstract level

• Implementation level

Wednesday, July 2, 14

Logical/Abstract Level

• An abstracted view of the domain and the
operations on the domain

• An interface for using the ADT

• Examples?

Wednesday, July 2, 14

Logical/Abstract Level

• An abstracted view of the domain and the
operations on the domain

• An interface for using the ADT

• Examples?

• The steering wheel, brake and gas pedals

• The +, -, *, and / operations, along with int

Wednesday, July 2, 14

Three Levels of ADTs

• There are three levels to an abstract data
type:

• Application/user level

• Logical/abstract level

• Implementation level

Wednesday, July 2, 14

Implementation Level

• How the ADT is implemented “under the
hood”

• The code behind the interface

• Examples?

Wednesday, July 2, 14

Implementation Level

• How the ADT is implemented “under the
hood”

• The code behind the interface

• Examples?

• The actual engine for the vehicle

• The integer representation chosen, along
with the algorithms for performing the
operations

Wednesday, July 2, 14

ADT Example in C

Wednesday, July 2, 14

Motivation
• A programmer wants to write a 2D

platforming game

• The visuals boil down to a grid of rectangles

Wednesday, July 2, 14

Important Features

• Players, enemies, platforms, and walls are all
rectangles

• In order for the game mechanics to work
as expected, we need to be able to

• Determine and modify the width and
height of a rectangle

• Determine the perimeter of a rectangle

• Determine the area of a rectangle

Wednesday, July 2, 14

Rectangle ADT

• What is the application level?

Wednesday, July 2, 14

Rectangle ADT

• What is the application level?

• The visuals and mechanics of a 2D
platforming game

Wednesday, July 2, 14

Rectangle ADT

• What about the logical level from a high-
level?

• Recall: width, height, perimeter, area

Wednesday, July 2, 14

Rectangle ADT

• What about the logical level as a C
interface? (width, height, perimeter, area)

• Data representation?

• Representation of operations?

• Try it yourself!

Wednesday, July 2, 14

Example in Code

Wednesday, July 2, 14

Rectangle ADT

• The implementation level is pretty simple in
this case

• Area = width * height

• Perimeter = 2 * (width + height)

Wednesday, July 2, 14

Problems

• With respect to how we defined ADTs, the
C implementation has some issues

• What are these (two major problems)?

Wednesday, July 2, 14

Problems

• With respect to how we defined ADTs, the
C implementation has some issues

• What are these?

• A rectangle is a struct, and we can
always see its internal details

• The interface is tied to this
implementation

Wednesday, July 2, 14

Seeing Internal Details

• We often say is this a leaky abstraction - it
does not abstract over everything it should

• How do we hide function implementation?

• How do we hide struct implementation?

Wednesday, July 2, 14

Seeing Internal Details

• We often say is this a leaky abstraction - it
does not abstract over everything it should

• How do we hide function implementation?

• Header files for interfaces, C files for
implementation

• How do we hide struct implementation?

• Just plain hard in C; no “accepted” way,
and it’s an uphill battle

Wednesday, July 2, 14

Interface Tied to
Implementation

• The interface-defined getArea has only
one implementation

• It is not possible to have two functions
named getArea in C

• Necessary for a drop-in replacement

Wednesday, July 2, 14

Why this Matters -
Example

• The game developer notices that the game
spends 50% of its time calculating area and
perimeter

• The rectangles rarely change their width
and height

• How might we make things faster?

Wednesday, July 2, 14

Why this Matters -
Example

• The game developer notices that the game
spends 50% of its time calculating area and
perimeter

• The rectangles rarely change their width
and height

• How might we make things faster?

• Precompute area and perimeter, and
store them in the rectangle itself

Wednesday, July 2, 14

Interface Tied to
Implementation

• Precomputing is great for this example

• What if we only need width and height, and
we want to minimize the amount of
memory used?

Wednesday, July 2, 14

Interface Tied to
Implementation

• Precomputing is great for this example

• What if we only need width and height, and
we want to minimize the amount of
memory used?

• Our original implementation was the
best!

• There is rarely a single perfect
implementation

Wednesday, July 2, 14

Interface Tied to
Implementation

• This can be addressed in C, but it gets very
messy

• Doing it properly requires features we
won’t discuss

• Very error-prone, and leads to bulky
code

• Code basically must determine which
implementation is used and respond
accordingly

Wednesday, July 2, 14

So what if C is bad for
this?

• The bulk of this class discusses different
kinds of ADTs

• C is really not the language for
implementing these properly

• We need a better language for this

Wednesday, July 2, 14

C++

Wednesday, July 2, 14

Motivation for C++

• C++ has additional features that makes
implementing ADTs much cleaner

• Can hide implementation details much,
much better

• Can vary implementation used relatively
easily

• Can tightly couple data representation
with the operations on said data

Wednesday, July 2, 14

Design Goals

• Be as close to C as possible

• Nearly backwards compatible - a
superset of C

• Incorporate better support for handling
ADTs, and especially object-oriented
programming

Wednesday, July 2, 14

For Now

• Will talk about fundamental differences of
C++ next lecture

• For now, I will be covering minor
differences

• You may have to learn these on your own

• Fundamental differences need a whole
lecture

Wednesday, July 2, 14

Minor C++ Differences

Wednesday, July 2, 14

Memory Allocation

Wednesday, July 2, 14

new instead of
malloc - non-arrays

// in C
int *x1 = malloc(sizeof(int));

// in C++
int *x2 = new int;

Wednesday, July 2, 14

new instead of
malloc - arrays

// in C
int *x1 = malloc(sizeof(int) * 5);

// in C++
int *x2 = new int[5];

Wednesday, July 2, 14

delete instead of
free - non-arrays

// in C
int *x1 = malloc(sizeof(int));
free(x1);

// in C++
int *x2 = new int;
delete x2;

Wednesday, July 2, 14

delete[] instead of
free - arrays

// in C
int *x1 = malloc(sizeof(int) * 5);
free(x1);

// in C++
int *x2 = new int[5];
delete[] x2;

Wednesday, July 2, 14

delete vs. delete[]

• Intuitively:

• delete just frees the area

• delete[] frees the area, and calls object
destructors if it is an array of objects (more
on those later)

• Undefined what happens if you delete
(as opposed to delete[]) an array

Wednesday, July 2, 14

Intermixing Old and New

• Anything allocated with malloc should be
deallocated with free

• Anything allocated with new should be
deallocated with delete

• Intermixing is undefined (new/free and
malloc/delete)

• Unless you are interoperating with C, use
new and delete exclusively

Wednesday, July 2, 14

Overloading

Wednesday, July 2, 14

Motivation

• Sometimes, a single operation makes sense
in multiple different contexts

• The + operator for int and double

• getArea for rectangles, squares, and
circles

• C limits us here. How?

Wednesday, July 2, 14

Motivation

• Sometimes, a single operation makes sense
in multiple different contexts

• The + operator for int and double

• getArea for triangles, rectangles, and
circles

• C limits us here. How?

• + is built-in and works this way, but we
cannot define anything like this

Wednesday, July 2, 14

Solution

• We want to overload the definition of
getArea

• Overloading based on the signature of the
function

• Name of the function

• Number of arguments

• Types of arguments

• Not the return type (in C++)
Wednesday, July 2, 14

Example

double getArea(triangle* t);
double getArea(square* s);
double getArea(circle* c);

Wednesday, July 2, 14

const

Wednesday, July 2, 14

Motivation

• A lot of bugs are rooted in unexpected
state changes

• Something unexpectedly changes a
variable’s value

• A “read-only” operation wasn’t read-only

• We would like a way to guarantee that
state cannot change

Wednesday, July 2, 14

Example

void foo(const char* const s) {
 s[0] = ‘a’; // disallowed
 s = NULL; // disallowed
}

What is pointed to
is constant

The pointer itself
is constant

Wednesday, July 2, 14

References

Wednesday, July 2, 14

Motivation

• Pointers allow us to indirectly refer to
data, which is very powerful

• ...but it’s also very error-prone

• We want something in between

Wednesday, July 2, 14

References

• These “reference” some other data directly

• References are indirect, but they behave as
if they were direct

• Unlike pointers, references are not a
distinct kind of data that lives in memory
(more restricted)

• Trying to get the address of a reference
gets the address of what it references

Wednesday, July 2, 14

References Example 1
void swapPointers(int* x, int* y) {
 int temp = *x;
 *x = *y;
 *y = temp;
}

void swapRef(int& x, int& y) {
 int temp = x;
 x = y;
 y = temp;
}

Wednesday, July 2, 14

References Example 2
struct point {
 int x;
 int y;
};

void swap(struct point& p) {
 int temp = p.x;
 p.x = p.y;
 p.y = temp;
}

int addedPoint(const struct point& p) {
 return p.x + p.y;
}

Wednesday, July 2, 14

#include

Wednesday, July 2, 14

#include

• No longer correct to put .h after the
filename for system-provided files

• Still expected for your own files

// provided by system:
#include <iostream>

// provided by you:
#include “myfile.h”

Wednesday, July 2, 14

Namespaces

Wednesday, July 2, 14

Motivation

• Every name (variable, function, struct) in
C lives in the some distinct namespace

• Means we cannot define two variables with
the same name at the same scope

• Global variable pain

Wednesday, July 2, 14

Namespaces

• A way for the programmer to define
custom namespaces

• In this class, you won’t be defining your
own, but you will be using existing ones

• Most notable: std for the standard
library

Wednesday, July 2, 14

Namespaces

• Need to fully specify the name of
something

• For example, endl is defined in namespace
std, so to use it we must say:

•std::endl

Wednesday, July 2, 14

Namespaces

• Repeatedly typing out the namespace can be
annoying, so we can instead say:

•using std::endl;

• ...and then later simply say endl everywhere
we would have said std::endl

Wednesday, July 2, 14

Namespaces

• Sometimes we want everything from a
namespace. For that, we can say:

•using namespace std;

• ...to put everything in the std namespace
in scope (no more need to prepend
std:: to everything)

Wednesday, July 2, 14

Terminal I/O

Wednesday, July 2, 14

Terminal I/O

• Terminal input and output are modeled as
streams that can be read from and written to

• cin: input stream

• cout: output stream

• cerr: error stream (often synonymous
with the output stream)

Wednesday, July 2, 14

Reading and Writing
• Can be done using >> and <<, respectively

#include <iostream>

using namespace std;

int main() {
 int x;
 cin >> x;
 cout << "Saw: " << x << endl;
 return 0;
}

Wednesday, July 2, 14

