CS24 Week 2 Lecture 2

Kyle Dewey




Overview

® Abstract data types
® |ntroduction to C++
® Minor C differences
® Object-oriented programming

® Obijects
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Abstract Data lypes




Righ-Level Example

® You have chosen to drive from Santa
Barbara to Los Angeles

® You have a driver’s license
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Questions

® Are these first-priority concerns!
® The number of cylinders in the vehicle!?
® The gas mileage!

® Manual or automatic transmission?
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Discussion

® Previous questions probably not first
concerns

® |f it has a steering wheel, brakes, and a gas
pedal, it probably is just fine

® [he implementation, that is, how the engine
works, is abstract
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Another Example

® We have a program that performs
arithmetic on some numbers (+, —, *, /)

® For basic correctness, how important is the
mechanism used to represent integers!

Wednesday, July 2, 14



Discussion

® Again, representation could vary
® One’s complement
® [wo’s complement
® Binary-coded decimal
® |nductive definition

® Which representation chosen is not
absolutely critical, due to abstraction
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Abstract Data lypes

® A way to abstract over data and the
operations on said data

® |ntentionally hides detail away
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Question

® Why is hiding detail good? (Two big
answers)
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Answers

® | ess information to keep track of

® |mplementations can vary independently of
how they are used

® E.g, with alicense, you can drive a wide
variety of vehicles
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Three Levels of ADTs

® There are three levels to an abstract data
type:
® Application/user level

® | ogical/abstract level

® |mplementation level
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Application/User Level

® Defines the problem domain
® What we need to do with it

® Examples?




Application/User Level

® Defines the problem domain
® VWhat we need to do with it
® Examples?

® Where we are driving to

® The arithmetic we need to perform
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Three Levels of ADTs

® There are three levels to an abstract data
type:
® Application/user level

® Logical/abstract level

® |mplementation level
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Logical/Abstract Level

® An abstracted view of the domain and the
operations on the domain

® An interface for using the ADT

® Examples?
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Logical/Abstract Level

® An abstracted view of the domain and the
operations on the domain

® An interface for using the ADT
® Examples?
® The steering wheel, brake and gas pedals

® The +, -, *,and / operations, along with int

Wednesday, July 2, 14



Three Levels of ADTs

® There are three levels to an abstract data
type:
® Application/user level

® | ogical/abstract level

® Implementation level
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Implementation Level

® How the ADT is implemented “under the
hood”

® [he code behind the interface

® Examples?
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Implementation Level

® How the ADT is implemented “under the
hood”

® The code behind the interface
® Examples?
® The actual engine for the vehicle

® The integer representation chosen, along
with the algorithms for performing the
operations
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ADT Example in C




Motivation

® A programmer wants to write a 2D
platforming game

® The visuals boil down to a grid of rectangles

TFaYwr =
O o 2 O o

Wednesday, July 2, 14



Important Features

® Players, enemies, platforms, and walls are all
rectangles

® |n order for the game mechanics to work
as expected, we need to be able to

® Determine and modify the width and
height of a rectangle

® Determine the perimeter of a rectangle

® Determine the area of a rectangle
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Rectangle ADT

® What is the application level?




Rectangle ADT

® What is the application level?

® The visuals and mechanics of a 2D
platforming game
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Rectangle ADT

® What about the logical level from a high-
level?

® Recall: width, height, perimeter, area
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Rectangle ADT

® What about the logical level as a C
interface! (width, height, perimeter, area)

® Data representation?
® Representation of operations?

® Try it yourself!
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Example in Code




Rectangle ADT

® The implementation level is pretty simple in
this case

® Area = width * height

® Perimeter = 2 * (width + height)
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Problems

® With respect to how we defined ADTs, the
C implementation has some issues

® What are these (two major problems)?
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Problems

® With respect to how we defined ADTs, the
C implementation has some issues

® \What are these!

® A rectangle is a struct,and we can
always see its internal details

® T[he interface is tied to this
implementation
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Seeing Internal Details

® Ve often say is this a leaky abstraction - it
does not abstract over everything it should

® How do we hide function implementation?

® How do we hide struct implementation!?

Wednesday, July 2, 14



Seeing Internal Details

® Ve often say is this a leaky abstraction - it
does not abstract over everything it should

® How do we hide function implementation?

® Header files for interfaces, C files for
implementation

® How do we hide struct implementation?

® Just plain hard in C; no “accepted” way,
and it’s an uphill battle
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Interface Tied to
Implementation

® The interface-defined getArea has only
one implementation

® |t is not possible to have two functions
named getArea in C

® Necessary for a drop-in replacement
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VVhy this Matters -
Example

® The game developer notices that the game
spends 50% of its time calculating area and
perimeter

® The rectangles rarely change their width
and height

® How might we make things faster?
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VVhy this Matters -
Example

® [he game developer notices that the game
spends 50% of its time calculating area and
perimeter

® The rectangles rarely change their width
and height

® How might we make things faster?

® Precompute area and perimeter, and
store them in the rectangle itself
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Interface Tied to
Implementation

® Precomputing is great for this example

® What if we only need width and height, and
we want to minimize the amount of
memory used!
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Interface Tied to
Implementation

® Precomputing is great for this example

® What if we only need width and height, and
we want to minimize the amount of
memory used!?

® Our original implementation was the
best!

® There is rarely a single perfect
implementation
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Interface Tied to
Implementation

® This can be addressed in C, but it gets very
messy

® Doing it properly requires features we
won't discuss

® Very error-prone, and leads to bulky
code

® Code basically must determine which

implementation is used and respond
accordingly
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So what if C is bad for
this?

® [he bulk of this class discusses different
kinds of ADTs

® C is really not the language for
implementing these properly

® We need a better language for this




++
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Motivation for C++

® (C++ has additional features that makes
implementing ADTs much cleaner

® Can hide implementation details much,
much better

® Can vary implementation used relatively
easily

® (Can tightly couple data representation
with the operations on said data
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Design Goals

® Be as close to C as possible

® Nearly backwards compatible - a
superset of C

® |ncorporate better support for handling
ADTs, and especially object-oriented
programming

Wednesday, July 2, 14



For Now

® Will talk about fundamental differences of
C++ next lecture

® For now, | will be covering minor
differences

® You may have to learn these on your own

® Fundamental differences need a whole
lecture
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Minor C++ Differences




Memory Allocation




new instead of
malloc - non-arrays

// 1n C
int *x1 = malloc(sizeof (1nt));

// 1in C++
1nt *x2 = new 1nt;




new instead of
malloc - arrays

// in C
int *x1 = malloc(sizeof(1nt) * bH);

// in CH++
int *xX2 = new 1nt|[b];




delete instead of
free - non-arrays

// 1n C
int *x1 = malloc(sizeof (1nt));
free(x1) ;

// 1in C++
1nt *x2 = new 1nt;
delete x2;




delete[] instead of
free - arrays

// in C
int *x1 = malloc(sizeof(1nt) * bH);
free(x1) ;

// in CH++
int *xX2 = new 1nt|[b];
delete|] x2;




delete vs.delete | ]

® |ntuitively:
® delete just frees the area

® delete[] frees the area, and calls object

destructors if it is an array of objects (more
on those later)

® Undefined what happens if you delete
(as opposed to delete[]) an array
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Intermixing Old and New

Anything allocated with ma1l1oc should be
deallocated with free

Anything allocated with new should be
deallocated with delete

Intermixing is undefined (new/free and
malloc/delete)

Unless you are interoperating with C, use
new and delete exclusively
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Overloading




Motivation

® Sometimes, a single operation makes sense
in multiple different contexts

® The + operator for int and double

® getArea for rectangles, squares, and
circles

® C limits us here. How!
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Motivation

® Sometimes, a single operation makes sense
in multiple different contexts

® The + operator for int and double

® getArea for triangles, rectangles, and
circles

® C limits us here. How!

® + is built-in and works this way, but we
cannot define anything like this
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Solution

® Ve want to overload the definition of
getArea

® Overloading based on the signature of the
function

® Name of the function
® Number of arguments
® Types of arguments

® Not the return type (in C++)
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doub.
doub.

Example

e ge-
e ge-

doub.

cArea (triangle* t);
cArea (square* s);

e ge-

“Area (circle* ¢);
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constc
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Motivation

® A lot of bugs are rooted in unexpected
state changes

® Something unexpectedly changes a
variable’s value

® A “read-only” operation wasn’t read-only

® We would like a way to guarantee that
state cannot change
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Example

What is pointed to | The pointer itself
IS constant IS constant

vold foo (const char* const s) {
s[0] = ‘a’'; // disallowed
s = NULL; // disallowed
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References




Motivation

® Pointers allow us to indirectly refer to
data, which is very powerful

® _.butit’s also very error-prone

® VWe want something in between
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References

® These “reference” some other data directly

® References are indirect, but they behave as
if they were direct

® Unlike pointers, references are not a
distinct kind of data that lives in memory
(more restricted)

® Trying to get the address of a reference
gets the address of what it references

Wednesday, July 2, 14



References Example |

vold swapPointers (int* x, 1nt* y) {

int temp = *x;
*X — *y;
*y = temp;

J

volid swapRef (1nté& x, 1nté& y) |
int temp = x;
X =V
y = Temp;

}
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References Example 2

struct point {
int x;
int vy;

b i

vold swap (struct pointé& p)
int temp = p.Xx;
D.X = P.V7?
p.y = temp;

}

int addedPoint (const struct pointé& p) |
return p.xXx + p.vy;

)
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finclude




£#include

® No longer correct to put . h after the
filename for system-provided files

® Still expected for your own files

// provided by system:
#include <iostream>

// provided by vyou:
#include “myfile.h”
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Namespaces




Motivation

® Every name (variable, function, st ruct) in
C lives in the some distinct namespace

® Means we cannot define two variables with
the same name at the same scope

® Global variable pain
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Namespaces

® A way for the programmer to define
custom namespaces

® |n this class, you won’t be defining your
own, but you will be using existing ones

® Most notable: st d for the standard
library
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Namespaces

® Need to fully specify the name of
something

® For example, endl is defined in namespace
std, so to use it we must say:

® std: :endl
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Namespaces

® Repeatedly typing out the namespace can be
annoying, so we can instead say:

® using std::endl;

® ..and then later simply say end1 everywhere
we would have said std: :endl
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Namespaces

® Sometimes we want everything from a
namespace. For that, we can say:

® Us1ng namespace std;

® _.to put everything in the std namespace
in scope (no more need to prepend
std: : to everything)
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Terminal I/O




Terminal I/O

® [erminal input and output are modeled as
streams that can be read from and written to

® Ci1n:input stream
® Cout:output stream

® cervr:error stream (often synonymous
with the output stream)
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Reading and VVriting

® Can be done using >> and <<, respectively

#include <iostream>

uslng namespace std;

int main () {
int x;
clin >> X;
cout << "Saw: " << x << endl;

return 0O;

J
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