CS24 Week 2 Lecture 2

Kyle Dewey




Overview

® Abstract data types
® |ntroduction to C++
® Minor C differences
® Object-oriented programming

® Obijects

Wednesday, July 2, 14



Abstract Data lypes




Righ-Level Example

® You have chosen to drive from Santa
Barbara to Los Angeles

® You have a driver’s license

Wednesday, July 2, 14



Questions

® Are these first-priority concerns!
® The number of cylinders in the vehicle!?
® The gas mileage!

® Manual or automatic transmission?

Wednesday, July 2, 14



Discussion

® Previous questions probably not first
concerns

® |f it has a steering wheel, brakes, and a gas
pedal, it probably is just fine

® [he implementation, that is, how the engine
works, is abstract

Wednesday, July 2, 14



Another Example

® We have a program that performs
arithmetic on some numbers (+, —, *, /)

® For basic correctness, how important is the
mechanism used to represent integers!

Wednesday, July 2, 14



Discussion

® Again, representation could vary
® One’s complement
® [wo’s complement
® Binary-coded decimal
® |nductive definition

® Which representation chosen is not
absolutely critical, due to abstraction

Wednesday, July 2, 14



Abstract Data lypes

® A way to abstract over data and the
operations on said data

® |ntentionally hides detail away

Wednesday, July 2, 14



Question

® Why is hiding detail good? (Two big
answers)

Wednesday, July 2, 14



Answers

® | ess information to keep track of

® |mplementations can vary independently of
how they are used

® E.g, with alicense, you can drive a wide
variety of vehicles

Wednesday, July 2, 14



Three Levels of ADTs

® There are three levels to an abstract data
type:
® Application/user level

® | ogical/abstract level

® |mplementation level

Wednesday, July 2, 14



Application/User Level

® Defines the problem domain
® What we need to do with it

® Examples?




Application/User Level

® Defines the problem domain
® VWhat we need to do with it
® Examples?

® Where we are driving to

® The arithmetic we need to perform

Wednesday, July 2, 14



Three Levels of ADTs

® There are three levels to an abstract data
type:
® Application/user level

® Logical/abstract level

® |mplementation level

Wednesday, July 2, 14



Logical/Abstract Level

® An abstracted view of the domain and the
operations on the domain

® An interface for using the ADT

® Examples?

Wednesday, July 2, 14



Logical/Abstract Level

® An abstracted view of the domain and the
operations on the domain

® An interface for using the ADT
® Examples?
® The steering wheel, brake and gas pedals

® The +, -, *,and / operations, along with int

Wednesday, July 2, 14



Three Levels of ADTs

® There are three levels to an abstract data
type:
® Application/user level

® | ogical/abstract level

® Implementation level

Wednesday, July 2, 14



Implementation Level

® How the ADT is implemented “under the
hood”

® [he code behind the interface

® Examples?

Wednesday, July 2, 14



Implementation Level

® How the ADT is implemented “under the
hood”

® The code behind the interface
® Examples?
® The actual engine for the vehicle

® The integer representation chosen, along
with the algorithms for performing the
operations

Wednesday, July 2, 14



ADT Example in C




Motivation

® A programmer wants to write a 2D
platforming game

® The visuals boil down to a grid of rectangles

TFaYwr =
O o 2 O o

Wednesday, July 2, 14



Important Features

® Players, enemies, platforms, and walls are all
rectangles

® |n order for the game mechanics to work
as expected, we need to be able to

® Determine and modify the width and
height of a rectangle

® Determine the perimeter of a rectangle

® Determine the area of a rectangle

Wednesday, July 2, 14



Rectangle ADT

® What is the application level?




Rectangle ADT

® What is the application level?

® The visuals and mechanics of a 2D
platforming game

Wednesday, July 2, 14



Rectangle ADT

® What about the logical level from a high-
level?

® Recall: width, height, perimeter, area

Wednesday, July 2, 14



Rectangle ADT

® What about the logical level as a C
interface! (width, height, perimeter, area)

® Data representation?
® Representation of operations?

® Try it yourself!

Wednesday, July 2, 14



Example in Code




Rectangle ADT

® The implementation level is pretty simple in
this case

® Area = width * height

® Perimeter = 2 * (width + height)

Wednesday, July 2, 14



Problems

® With respect to how we defined ADTs, the
C implementation has some issues

® What are these (two major problems)?

Wednesday, July 2, 14



Problems

® With respect to how we defined ADTs, the
C implementation has some issues

® \What are these!

® A rectangle is a struct,and we can
always see its internal details

® T[he interface is tied to this
implementation

Wednesday, July 2, 14



Seeing Internal Details

® Ve often say is this a leaky abstraction - it
does not abstract over everything it should

® How do we hide function implementation?

® How do we hide struct implementation!?

Wednesday, July 2, 14



Seeing Internal Details

® Ve often say is this a leaky abstraction - it
does not abstract over everything it should

® How do we hide function implementation?

® Header files for interfaces, C files for
implementation

® How do we hide struct implementation?

® Just plain hard in C; no “accepted” way,
and it’s an uphill battle

Wednesday, July 2, 14



Interface Tied to
Implementation

® The interface-defined getArea has only
one implementation

® |t is not possible to have two functions
named getArea in C

® Necessary for a drop-in replacement

Wednesday, July 2, 14



VVhy this Matters -
Example

® The game developer notices that the game
spends 50% of its time calculating area and
perimeter

® The rectangles rarely change their width
and height

® How might we make things faster?

Wednesday, July 2, 14



VVhy this Matters -
Example

® [he game developer notices that the game
spends 50% of its time calculating area and
perimeter

® The rectangles rarely change their width
and height

® How might we make things faster?

® Precompute area and perimeter, and
store them in the rectangle itself

Wednesday, July 2, 14



Interface Tied to
Implementation

® Precomputing is great for this example

® What if we only need width and height, and
we want to minimize the amount of
memory used!

Wednesday, July 2, 14



Interface Tied to
Implementation

® Precomputing is great for this example

® What if we only need width and height, and
we want to minimize the amount of
memory used!?

® Our original implementation was the
best!

® There is rarely a single perfect
implementation

Wednesday, July 2, 14



Interface Tied to
Implementation

® This can be addressed in C, but it gets very
messy

® Doing it properly requires features we
won't discuss

® Very error-prone, and leads to bulky
code

® Code basically must determine which

implementation is used and respond
accordingly

Wednesday, July 2, 14



So what if C is bad for
this?

® [he bulk of this class discusses different
kinds of ADTs

® C is really not the language for
implementing these properly

® We need a better language for this




++

Wednesday, July 2, 14



Motivation for C++

® (C++ has additional features that makes
implementing ADTs much cleaner

® Can hide implementation details much,
much better

® Can vary implementation used relatively
easily

® (Can tightly couple data representation
with the operations on said data

Wednesday, July 2, 14



Design Goals

® Be as close to C as possible

® Nearly backwards compatible - a
superset of C

® |ncorporate better support for handling
ADTs, and especially object-oriented
programming

Wednesday, July 2, 14



For Now

® Will talk about fundamental differences of
C++ next lecture

® For now, | will be covering minor
differences

® You may have to learn these on your own

® Fundamental differences need a whole
lecture

Wednesday, July 2, 14



Minor C++ Differences




Memory Allocation




new instead of
malloc - non-arrays

// 1n C
int *x1 = malloc(sizeof (1nt));

// 1in C++
1nt *x2 = new 1nt;




new instead of
malloc - arrays

// in C
int *x1 = malloc(sizeof(1nt) * bH);

// in CH++
int *xX2 = new 1nt|[b];




delete instead of
free - non-arrays

// 1n C
int *x1 = malloc(sizeof (1nt));
free(x1) ;

// 1in C++
1nt *x2 = new 1nt;
delete x2;




delete[] instead of
free - arrays

// in C
int *x1 = malloc(sizeof(1nt) * bH);
free(x1) ;

// in CH++
int *xX2 = new 1nt|[b];
delete|] x2;




delete vs.delete | ]

® |ntuitively:
® delete just frees the area

® delete[] frees the area, and calls object

destructors if it is an array of objects (more
on those later)

® Undefined what happens if you delete
(as opposed to delete[]) an array

Wednesday, July 2, 14



Intermixing Old and New

Anything allocated with ma1l1oc should be
deallocated with free

Anything allocated with new should be
deallocated with delete

Intermixing is undefined (new/free and
malloc/delete)

Unless you are interoperating with C, use
new and delete exclusively

Wednesday, July 2, 14



Overloading




Motivation

® Sometimes, a single operation makes sense
in multiple different contexts

® The + operator for int and double

® getArea for rectangles, squares, and
circles

® C limits us here. How!

Wednesday, July 2, 14



Motivation

® Sometimes, a single operation makes sense
in multiple different contexts

® The + operator for int and double

® getArea for triangles, rectangles, and
circles

® C limits us here. How!

® + is built-in and works this way, but we
cannot define anything like this

Wednesday, July 2, 14



Solution

® Ve want to overload the definition of
getArea

® Overloading based on the signature of the
function

® Name of the function
® Number of arguments
® Types of arguments

® Not the return type (in C++)

Wednesday, July 2, 14



doub.
doub.

Example

e ge-
e ge-

doub.

cArea (triangle* t);
cArea (square* s);

e ge-

“Area (circle* ¢);

Wednesday, July 2, 14



constc

Wednesday, July 2, 14



Motivation

® A lot of bugs are rooted in unexpected
state changes

® Something unexpectedly changes a
variable’s value

® A “read-only” operation wasn’t read-only

® We would like a way to guarantee that
state cannot change

Wednesday, July 2, 14



Example

What is pointed to | The pointer itself
IS constant IS constant

vold foo (const char* const s) {
s[0] = ‘a’'; // disallowed
s = NULL; // disallowed

Wednesday, July 2, 14



References




Motivation

® Pointers allow us to indirectly refer to
data, which is very powerful

® _.butit’s also very error-prone

® VWe want something in between

Wednesday, July 2, 14



References

® These “reference” some other data directly

® References are indirect, but they behave as
if they were direct

® Unlike pointers, references are not a
distinct kind of data that lives in memory
(more restricted)

® Trying to get the address of a reference
gets the address of what it references

Wednesday, July 2, 14



References Example |

vold swapPointers (int* x, 1nt* y) {

int temp = *x;
*X — *y;
*y = temp;

J

volid swapRef (1nté& x, 1nté& y) |
int temp = x;
X =V
y = Temp;

}

Wednesday, July 2, 14



References Example 2

struct point {
int x;
int vy;

b i

vold swap (struct pointé& p)
int temp = p.Xx;
D.X = P.V7?
p.y = temp;

}

int addedPoint (const struct pointé& p) |
return p.xXx + p.vy;

)

Wednesday, July 2, 14



finclude




£#include

® No longer correct to put . h after the
filename for system-provided files

® Still expected for your own files

// provided by system:
#include <iostream>

// provided by vyou:
#include “myfile.h”

Wednesday, July 2, 14



Namespaces




Motivation

® Every name (variable, function, st ruct) in
C lives in the some distinct namespace

® Means we cannot define two variables with
the same name at the same scope

® Global variable pain

Wednesday, July 2, 14



Namespaces

® A way for the programmer to define
custom namespaces

® |n this class, you won’t be defining your
own, but you will be using existing ones

® Most notable: st d for the standard
library

Wednesday, July 2, 14



Namespaces

® Need to fully specify the name of
something

® For example, endl is defined in namespace
std, so to use it we must say:

® std: :endl

Wednesday, July 2, 14



Namespaces

® Repeatedly typing out the namespace can be
annoying, so we can instead say:

® using std::endl;

® ..and then later simply say end1 everywhere
we would have said std: :endl

Wednesday, July 2, 14



Namespaces

® Sometimes we want everything from a
namespace. For that, we can say:

® Us1ng namespace std;

® _.to put everything in the std namespace
in scope (no more need to prepend
std: : to everything)

Wednesday, July 2, 14



Terminal I/O




Terminal I/O

® [erminal input and output are modeled as
streams that can be read from and written to

® Ci1n:input stream
® Cout:output stream

® cervr:error stream (often synonymous
with the output stream)

Wednesday, July 2, 14



Reading and VVriting

® Can be done using >> and <<, respectively

#include <iostream>

uslng namespace std;

int main () {
int x;
clin >> X;
cout << "Saw: " << x << endl;

return 0O;

J

Wednesday, July 2, 14



