
CS24 Week 3 Lecture 1
Kyle Dewey

Thursday, July 10, 14

Overview
• Some minor C++ points

• ADT Review

• Object-oriented Programming

• C++

• Classes

• Constructors

• Destructors

• More minor Points (if time)
Thursday, July 10, 14

Key Minor Points

Thursday, July 10, 14

const

Thursday, July 10, 14

Motivation

• A lot of bugs are rooted in unexpected
state changes

• Something unexpectedly changes a
variable’s value

• A “read-only” operation wasn’t read-only

• We would like a way to guarantee that
state cannot change

Thursday, July 10, 14

Example

void foo(const char* const s) {
 s[0] = ‘a’; // disallowed
 s = NULL; // disallowed
}

What is pointed to
is constant

The pointer itself
is constant

Thursday, July 10, 14

References

Thursday, July 10, 14

Motivation

• Pointers allow us to indirectly refer to
data, which is very powerful

• ...but it’s also very error-prone

• We want something in between

Thursday, July 10, 14

References

• These “reference” some other data directly

• References are indirect, but they behave as
if they were direct

• Unlike pointers, references are not a
distinct kind of data that lives in memory
(more restricted)

• Trying to get the address of a reference
gets the address of what it references

Thursday, July 10, 14

References Example 1
void swapPointers(int* x, int* y) {
 int temp = *x;
 *x = *y;
 *y = temp;
}

void swapRef(int& x, int& y) {
 int temp = x;
 x = y;
 y = temp;
}

Thursday, July 10, 14

References Example 2
struct point {
 int x;
 int y;
};

void swap(struct point& p) {
 int temp = p.x;
 p.x = p.y;
 p.y = temp;
}

int addedPoint(const struct point& p) {
 return p.x + p.y;
}

Thursday, July 10, 14

ADT Review

• What is the application level?

• What is the logical/abstract level?

• What is the implementation level?

Thursday, July 10, 14

Object-Oriented
Programming (OOP)

Thursday, July 10, 14

Observation

• Life is filled with nouns (people, cars, table,
projector...)

• These different nouns interact with each
other (speak, accelerate, place object on,
turn on)

• Often have a concept of internal state
(thinking, speed, weight, bulb health)

Thursday, July 10, 14

Observation

• Code can often be modeled in the exact
same way

Thursday, July 10, 14

Relationship to OOP

• Nouns - objects

• Creating an object - constructors

• Which interactions are possible - methods

• Performing an interaction - method calls

• Internal state - private state, or
encapsulation

Thursday, July 10, 14

Constructors
Car makeCar(int color);

Thursday, July 10, 14

Constructors
Car makeCar(int color);

Constructing an object

Car c = makeCar(GREEN);

c: Car object
Thursday, July 10, 14

Constructors
makeCar(int color);

Methods
void accelerateTo(double mph);
void brake();
double getSpeed();

c: Car object
Thursday, July 10, 14

Constructors
makeCar(int color);

Methods
void accelerateTo(double mph);
void brake();
double getSpeed();

Method call:
c.accelerateTo(15.5);

c: Car object
Thursday, July 10, 14

Constructors
makeCar(int color);

Methods
void accelerateTo(double mph);
void brake();
double getSpeed();

Private State:
double speed = 15.5;

c: Car object
Thursday, July 10, 14

Recall the Rectangle

• Width, height, finding area and perimeter

• What does the constructor look like?

• What sort of methods does it have?

• What kind of internal/private state does it
have?

Thursday, July 10, 14

OOP for ADTs

• OOP is great for modeling ADTs. Why?

• Hint: why was C a suboptimal choice?

Thursday, July 10, 14

OOP for ADTs

• OOP is great for modeling ADTs. Why?

• Methods good for defining interfaces
(logical level)

• Private state/encapsulation good for
hiding implementation details

• C doesn’t always make encapsulation easy

Thursday, July 10, 14

OOP in C++

Thursday, July 10, 14

Objects

• In order to make an object, we first need
to define a class

• A class behaves like a sort of template for
making objects

• With the previous example, we would need
a Car class

Thursday, July 10, 14

Classes

• Hold the constructors, methods, and
private state of the objects we want to
make

• To make an object, we call a class’
constructor to get an instance of a class

• Class instances are synonymous with
objects

Thursday, July 10, 14

Car Class Example

Thursday, July 10, 14

Rectangle Class
Example

Thursday, July 10, 14

Creating Class
Instances

• Can be made either on the stack or the heap

• On the stack: Car c(speed);

• On the heap: Car* c = new Car(speed);

• Both of these examples call the same constructor

• For the heap, can free with: delete c;

Thursday, July 10, 14

Constructors in C++

Thursday, July 10, 14

Constructors

• C++ lets us define multiple constructors
for a class

• Each can be used to make a class instance

Thursday, July 10, 14

Default Constructor

Thursday, July 10, 14

Default Constructor

• A constructor of special mention is the
nullary, AKA default constructor

• Takes no arguments

• Used when creating an array of objects on
the stack: Car c[20];

• Why?

Thursday, July 10, 14

Default Constructor

• A constructor of special mention is the
nullary, AKA default constructor

• Takes no arguments

• Used when creating an array of objects on
the stack: Car c[20];

• Why? - how would you pass the
arguments if it weren’t this way?

Thursday, July 10, 14

Default Constructor

• What happens?

class Foo {
 private:
 int x;
};
...
Foo f;

Thursday, July 10, 14

Default Constructor

• All OK - the compiler generates a default
constructor for you

class Foo {
 private:
 int x;
};
...
Foo f;

Thursday, July 10, 14

Default Constructor

• What happens?

class Foo {
 private:
 int x;
};
...
Foo f; f.x;

Thursday, July 10, 14

Default Constructor

• Undefined - f.x can be set, but not accessed

class Foo {
 private:
 int x;
};
...
Foo f; f.x;

Thursday, July 10, 14

Default Constructor

• What happens?

class Foo {
 public:
 Foo(int y);
 private:
 int x;
};
...
Foo f;

Thursday, July 10, 14

Default Constructor

• Compile-time error: compiler cannot
generate a default constructor

class Foo {
 public:
 Foo(int y);
 private:
 int x;
};
...
Foo f;

Thursday, July 10, 14

Copy Constructor

Thursday, July 10, 14

Copy Constructor

• Used in contexts where we need to copy
an object

• Declarations with initialization

• Function calls

Car(const Car& other);

Thursday, July 10, 14

Copy Constructor
• What happens?

class Foo {
 public:
 Foo(int y);
 private:
 int x;
};
...
Foo a(1);
Foo b = a; // copy constructor

Thursday, July 10, 14

Copy Constructor
• All ok - the compiler generates a default

copy constructor that copies everything

class Foo {
 public:
 Foo(int y);
 private:
 int x;
};
...
Foo a(1);
Foo b = a; // copy constructor

Thursday, July 10, 14

Default Copy
Constructor

• Caveat: the copy performed is a shallow
copy

Object 1

memory

Before
Copy

Thursday, July 10, 14

Default Copy
Constructor

• Caveat: the copy performed is a shallow
copy

Object 1

memory

After
Copy

Object 2

Thursday, July 10, 14

Default Copy
Constructor

• If you want a deep copy, you must do it
yourself with your own copy constructor

Object 1

memory

Before
Copy

Thursday, July 10, 14

Default Copy
Constructor

• If you want a deep copy, you must do it
yourself with your own copy constructor

Object 1

memory

After
Copy

Object 2

memory

Thursday, July 10, 14

Destructors

Thursday, July 10, 14

Destructors

• Optionally, you can define a destructor for
a class: Car::~Car() {}

• Destructors are called during deallocation

• When is this for something on the stack?

• When is this for something on the heap?

Thursday, July 10, 14

Destructors

• Optionally, you can define a destructor for
a class: Car::~Car() {}

• Destructors are called during deallocation

• When is this for something on the stack?

• Return from scope that introduced it

• When is this for something on the heap?

• When delete is called on it

Thursday, July 10, 14

Destructors

• Useful for objects which dynamically
allocate memory internally

• Why?

Thursday, July 10, 14

Destructors

• Useful for objects which dynamically
allocate memory internally

• Why? - Allows for memory to be
deallocated in synchronization with the
object being deallocated

Thursday, July 10, 14

More Minor Points

Thursday, July 10, 14

#include

Thursday, July 10, 14

#include

• No longer correct to put .h after the
filename for system-provided files

• Still expected for your own files

// provided by system:
#include <iostream>

// provided by you:
#include “myfile.h”

Thursday, July 10, 14

Namespaces

Thursday, July 10, 14

Motivation

• Every name (variable, function, struct) in
C lives in the some distinct namespace

• Means we cannot define two variables with
the same name at the same scope

• Global variable pain

Thursday, July 10, 14

Namespaces

• A way for the programmer to define
custom namespaces

• In this class, you won’t be defining your
own, but you will be using existing ones

• Most notable: std for the standard
library

Thursday, July 10, 14

Namespaces

• Need to fully specify the name of
something

• For example, endl is defined in namespace
std, so to use it we must say:

•std::endl

Thursday, July 10, 14

Namespaces

• Repeatedly typing out the namespace can be
annoying, so we can instead say:

•using std::endl;

• ...and then later simply say endl everywhere
we would have said std::endl

Thursday, July 10, 14

Namespaces

• Sometimes we want everything from a
namespace. For that, we can say:

•using namespace std;

• ...to put everything in the std namespace
in scope (no more need to prepend
std:: to everything)

Thursday, July 10, 14

Terminal I/O

Thursday, July 10, 14

Terminal I/O

• Terminal input and output are modeled as
streams that can be read from and written to

• cin: input stream

• cout: output stream

• cerr: error stream (often synonymous
with the output stream)

Thursday, July 10, 14

Reading and Writing
• Can be done using >> and <<, respectively

#include <iostream>

using namespace std;

int main() {
 int x;
 cin >> x;
 cout << "Saw: " << x << endl;
 return 0;
}

Thursday, July 10, 14

