
CS24 Week 3 Lecture 2
Kyle Dewey

Thursday, July 10, 14

Overview

• C++

• Classes

• Constructors

• Destructors

• List ADT

• Array Lists

• Linked Lists

Thursday, July 10, 14

Note on Minor C++
Points

• Differences with #include, namespaces,
and terminal I/O won’t be covered in class

• You are still expected to know these

• Slides online for last lecture have this
content

Thursday, July 10, 14

Car Class Example

Thursday, July 10, 14

Rectangle Class
Example

Thursday, July 10, 14

Creating Class
Instances

• Can be made either on the stack or the heap

• On the stack: Car c(speed);

• On the heap: Car* c = new Car(speed);

• Both of these examples call the same constructor

• For the heap, can free with: delete c;

Thursday, July 10, 14

Constructors in C++

Thursday, July 10, 14

Constructors

• C++ lets us define multiple constructors
for a class

• Each can be used to make a class instance

Thursday, July 10, 14

Default Constructor

Thursday, July 10, 14

Default Constructor

• A constructor of special mention is the
nullary, AKA default constructor

• Takes no arguments

• Used when creating an array of objects on
the stack: Car c[20];

• Why?

Thursday, July 10, 14

Default Constructor

• A constructor of special mention is the
nullary, AKA default constructor

• Takes no arguments

• Used when creating an array of objects on
the stack: Car c[20];

• Why? - how would you pass the
arguments if it weren’t this way?

Thursday, July 10, 14

Default Constructor

• What happens?

class Foo {
 private:
 int x;
};
...
Foo f;

Thursday, July 10, 14

Default Constructor

• All OK - the compiler generates a default
constructor for you

class Foo {
 private:
 int x;
};
...
Foo f;

Thursday, July 10, 14

Default Constructor

• What happens?

class Foo {
 private:
 int x;
};
...
Foo f; f.x;

Thursday, July 10, 14

Default Constructor

• Undefined - f.x can be set, but not accessed

class Foo {
 private:
 int x;
};
...
Foo f; f.x;

Thursday, July 10, 14

Default Constructor

• What happens?

class Foo {
 public:
 Foo(int y);
 private:
 int x;
};
...
Foo f;

Thursday, July 10, 14

Default Constructor

• Compile-time error: compiler cannot
generate a default constructor

class Foo {
 public:
 Foo(int y);
 private:
 int x;
};
...
Foo f;

Thursday, July 10, 14

Copy Constructor

Thursday, July 10, 14

Copy Constructor

• Used in contexts where we need to copy
an object

• Declarations with initialization

• Function calls

Car(const Car& other);

Thursday, July 10, 14

Copy Constructor
• What happens?

class Foo {
 public:
 Foo(int y);
 private:
 int x;
};
...
Foo a(1);
Foo b = a; // copy constructor

Thursday, July 10, 14

Copy Constructor
• All ok - the compiler generates a default

copy constructor that copies everything

class Foo {
 public:
 Foo(int y);
 private:
 int x;
};
...
Foo a(1);
Foo b = a; // copy constructor

Thursday, July 10, 14

Default Copy
Constructor

• Caveat: the copy performed is a shallow
copy

Object 1

memory

Before
Copy

Thursday, July 10, 14

Default Copy
Constructor

• Caveat: the copy performed is a shallow
copy

Object 1

memory

After
Copy

Object 2

Thursday, July 10, 14

Default Copy
Constructor

• If you want a deep copy, you must do it
yourself with your own copy constructor

Object 1

memory

Before
Copy

Thursday, July 10, 14

Default Copy
Constructor

• If you want a deep copy, you must do it
yourself with your own copy constructor

Object 1

memory

After
Copy

Object 2

memory

Thursday, July 10, 14

Destructors

Thursday, July 10, 14

Destructors

• Optionally, you can define a destructor for
a class: Car::~Car() {}

• Destructors are called during deallocation

• When is this for something on the stack?

• When is this for something on the heap?

Thursday, July 10, 14

Destructors

• Optionally, you can define a destructor for
a class: Car::~Car() {}

• Destructors are called during deallocation

• When is this for something on the stack?

• Return from scope that introduced it

• When is this for something on the heap?

• When delete is called on it

Thursday, July 10, 14

Destructors

• Useful for objects which dynamically
allocate memory internally

• Why?

Thursday, July 10, 14

Destructors

• Useful for objects which dynamically
allocate memory internally

• Why? - Allows for memory to be
deallocated in synchronization with the
object being deallocated

Thursday, July 10, 14

Additional Use of const

• We’ve seen const already in two positions:

void foo(const char* const s) {
 s[0] = ‘a’; // disallowed
 s = NULL; // disallowed
}

What is pointed to
is constant

The pointer itself
is constant

Thursday, July 10, 14

Additional Use of const
• We can also tag whole methods with

const, indicating that they may not change
any state of the class they are called on

• Great for accessors, as opposed to mutators

class Foo {
 public:
 Foo(int a) { b = a; }
 void setValue(int a) { b = a; }
 int getValue() const { return b; }
 private:
 int b;
};

Thursday, July 10, 14

List ADT

Thursday, July 10, 14

Motivation

• We often work with a series of items

• Addresses in a phone book, cards in a
deck, etc.

• Arrays can be painful

• Fixed size

• Error-prone (e.g., index too large)

• Repeated similar operations

Thursday, July 10, 14

Idea: A “List” ADT

• Handles the storage of elements and the
addition of elements

• Holds common operations (e.g., checking if
an item is contained within)

• Can protect against out-of-bounds

Thursday, July 10, 14

A List ADT

• What should the List ADT have at the
logical/abstract/interface level?

Thursday, July 10, 14

A List ADT

• What should the List ADT have at the
logical/abstract/interface level?

• Basic examples: get item, add item, insert
item at a position, remove item, get size

• Many, many more examples possible

Thursday, July 10, 14

Idealized List ADT

List emptyList();
int getSize();
int getInt(int position);
bool containsInt(int item);
void addInt(int item);
void addIntAtPosition(int item,
 int position);
void removeFirstInt(int item);

Thursday, July 10, 14

Implementing in C++
• Classes? Constructors? Methods?

• Which methods should be marked const?

List emptyList();
int getSize();
int getInt(int position);
bool containsInt(int item);
void addInt(int item);
void addIntAtPosition(int item,
 int position);
void removeFirstInt(int item);

Thursday, July 10, 14

Implementing in C++
• Classes? Constructors? Methods?

• Which methods should be marked const?

List emptyList(); // Constructor
int getSize() const;
int getInt(int position) const;
bool containsInt(int item) const;
void addInt(int item);
void addIntAtPosition(int item,
 int position);
void removeFirstInt(int item);

Thursday, July 10, 14

Implementing in C++

• For now, let’s implement this via an array

• What other issues are present because of
this design decision?

Thursday, July 10, 14

Implementing in C++

• For now, let’s implement this via an array

• What other issues are present because of
this design decision?

• Size of the array?

• Accessing out-of-bounds element?

• Adding an element in the middle?

• How might we handle each?

Thursday, July 10, 14

Implementation in C++

Thursday, July 10, 14

Array-Based List

• What sort of operations were hard
because arrays were used?

Thursday, July 10, 14

Array-Based List

• What sort of operations were hard or
awkward because arrays were used?

• Constructor needed an array size

• Adding an element at an arbitrary
position required pushing elements to
the right

• Removing an element required pushing
elements to the left

Thursday, July 10, 14

Other Approaches

• How might we improve on these issues?
(Fixed size, making arbitrary addition and
removal easier)

Thursday, July 10, 14

Other Approaches

• How might we improve on these issues?
(Fixed size, making arbitrary addition and
removal easier)

• Wide variety of answers

• Approach we will take: linked lists

Thursday, July 10, 14

Fixed Size

• Observation: with arrays, we must
allocate in blocks

• We must pre-allocate room, and
expanding this room is obnoxious

• We would like to allocate as we go
along, in a piecewise fashion

Thursday, July 10, 14

Piecewise Allocation

• How can we represent the list in a way that
makes piecewise allocation possible? (Not
just extending onto an array)

Thursday, July 10, 14

Piecewise Allocation

• How can we represent the list in a way that
makes piecewise allocation possible? (Not
just extending onto another array)

• Piecewise implies separate chunks that
hold onto single elements

• How do we keep track of chunks?

Thursday, July 10, 14

Linked Lists

• Idea: have each chunk (called a node) keep
track of both a list element and another
chunk

• Need to keep track of only the head node

0

List: 0, 1, 2, 3

1 2 3 X

Thursday, July 10, 14

Node Representation

• What might a node look like in C/C++?

Thursday, July 10, 14

Node Representation

• What might a node look like in C?

struct Node {
 int item;
 struct Node* next;
};

Thursday, July 10, 14

Node Representation
• What might a node look like in C++?

class Node {
 public:
 Node(int i, Node* n);
 int getItem() const;
 void setItem(int i);
 Node* getNext() const;
 void setNext(Node* n);
 private:
 int item;
 Node* node;
};

Thursday, July 10, 14

C++ Implementation of
Linked Lists

Thursday, July 10, 14

