
CS24 Week 4 Lecture 1
Kyle Dewey

Monday, July 14, 14

Overview

• Additional use of const in C++

• List ADT

• Array Lists

• Linked Lists

Monday, July 14, 14

Additional Use of const

• We’ve seen const already in two positions:

void foo(const char* const s) {
 s[0] = ‘a’; // disallowed
 s = NULL; // disallowed
}

What is pointed to
is constant

The pointer itself
is constant

Monday, July 14, 14

Additional Use of const
• We can also tag whole methods with

const, indicating that they may not change
any state of the class they are called on

• Great for accessors, as opposed to mutators

class Foo {
 public:
 Foo(int a) { b = a; }
 void setValue(int a) { b = a; }
 int getValue() const { return b; }
 private:
 int b;
};

Monday, July 14, 14

this

Monday, July 14, 14

this
• Allows one to refer to the object being

acted upon in a method call, via a pointer

class Foo {
 private:
 int x;
 public:
 int getX() {
 return this->x;
 }
};

Monday, July 14, 14

List ADT

Monday, July 14, 14

Motivation

• We often work with a series of items

• Addresses in a phone book, cards in a
deck, etc.

• Arrays can be painful

• Fixed size

• Error-prone (e.g., index too large)

• Repeated similar operations

Monday, July 14, 14

Idea: A “List” ADT

• Handles the storage of elements and the
addition of elements

• Holds common operations (e.g., checking if
an item is contained within)

• Can protect against out-of-bounds

Monday, July 14, 14

A List ADT

• What should the List ADT have at the
logical/abstract/interface level?

Monday, July 14, 14

A List ADT

• What should the List ADT have at the
logical/abstract/interface level?

• Basic examples: get item, add item, insert
item at a position, remove item, get size

• Many, many more examples possible

Monday, July 14, 14

Idealized List ADT

List emptyList();
int getSize();
int getInt(int position);
bool containsInt(int item);
void addInt(int item);
void addIntAtPosition(int item,
 int position);
void removeFirstInt(int item);

Monday, July 14, 14

Implementing in C++
• Classes? Constructors? Methods?

• Which methods should be marked const?

List emptyList();
int getSize();
int getInt(int position);
bool containsInt(int item);
void addInt(int item);
void addIntAtPosition(int item,
 int position);
void removeFirstInt(int item);

Monday, July 14, 14

Implementing in C++
• Classes? Constructors? Methods?

• Which methods should be marked const?

List emptyList(); // Constructor
int getSize() const;
int getInt(int position) const;
bool containsInt(int item) const;
void addInt(int item);
void addIntAtPosition(int item,
 int position);
void removeFirstInt(int item);

Monday, July 14, 14

Implementing in C++

• For now, let’s implement this via an array

• What other issues are present because of
this design decision?

Monday, July 14, 14

Implementing in C++

• For now, let’s implement this via an array

• What other issues are present because of
this design decision?

• Size of the array?

• Accessing out-of-bounds element?

• Adding an element in the middle?

• How might we handle each?

Monday, July 14, 14

Implementation in C++

Monday, July 14, 14

Array-Based List

• What sort of operations were hard
because arrays were used?

Monday, July 14, 14

Array-Based List

• What sort of operations were hard or
awkward because arrays were used?

• Constructor needed an array size

• Adding an element at an arbitrary
position required pushing elements to
the right

• Removing an element required pushing
elements to the left

Monday, July 14, 14

Other Approaches

• How might we improve on these issues?
(Fixed size, making arbitrary addition and
removal easier)

Monday, July 14, 14

Other Approaches

• How might we improve on these issues?
(Fixed size, making arbitrary addition and
removal easier)

• Wide variety of answers

• Approach we will take: linked lists

Monday, July 14, 14

Fixed Size

• Observation: with arrays, we must
allocate in blocks

• We must pre-allocate room, and
expanding this room is obnoxious

• We would like to allocate as we go
along, in a piecewise fashion

Monday, July 14, 14

Piecewise Allocation

• How can we represent the list in a way that
makes piecewise allocation possible? (Not
just extending onto an array)

Monday, July 14, 14

Piecewise Allocation

• How can we represent the list in a way that
makes piecewise allocation possible? (Not
just extending onto another array)

• Piecewise implies separate chunks that
hold onto single elements

• How do we keep track of chunks?

Monday, July 14, 14

Linked Lists

• Idea: have each chunk (called a node) keep
track of both a list element and another
chunk

• Need to keep track of only the head node

0

List: 0, 1, 2, 3

1 2 3 X

Monday, July 14, 14

Node Representation

• What might a node look like in C/C++?

Monday, July 14, 14

Node Representation

• What might a node look like in C?

struct Node {
 int item;
 struct Node* next;
};

Monday, July 14, 14

Node Representation
• What might a node look like in C++?

class Node {
 public:
 Node(int i, Node* n);
 int getItem() const;
 void setItem(int i);
 Node* getNext() const;
 void setNext(Node* n);
 private:
 int item;
 Node* node;
};

Monday, July 14, 14

C++ Implementation of
Linked Lists

Monday, July 14, 14

