
CS24 Week 6 Lecture 1
Kyle Dewey

Thursday, July 24, 14

Overview

• Complexity and complexity analysis

Thursday, July 24, 14

Complexity

Thursday, July 24, 14

Complexity
• Up until this point, we have used terms like

“efficiency”, “expensive”, and “cheap”

int bar(int* array) {
 int x;
 for(x = 0; x < MAX_SIZE; x++) {
 if (array[x] == 7) return x;
 }
 return -1;
}

int foo(int* array) {
 return array[2] * array[3];
}

Thursday, July 24, 14

Complexity
• Up until this point, we have used terms like

“efficiency”, “expensive”, and “cheap”

int foo(int* array) {
 return array[2] * array[3];
}

int bar(int* array) {
 int x;
 for(x = 0; x < MAX_SIZE; x++) {
 if (array[x] == 7) return x;
 }
 return -1;
}

cheap(?)

expensive(?)

Thursday, July 24, 14

Ambiguous Terms

• Under what circumstances is this cheap?

• When is it expensive?

int bar(int* array) {
 int x;
 for(x = 0; x < MAX_SIZE; x++) {
 if (array[x] == 7) return x;
 }
 return -1;
}

Thursday, July 24, 14

“Expensive”, “Cheap”,
“Efficient”

• What is good about these terms?

• What is bad about these terms?

Thursday, July 24, 14

“Expensive”, “Cheap”
“Efficient”

• What is good about these terms?

• Easy to understand

• What is bad about these terms?

• Imprecise

• Binary in nature (either cheap or
expensive)

• Program efficiency is often dependent on
input size

Thursday, July 24, 14

Measuring Efficiency

• How might we determine the efficiency of
a program?

Thursday, July 24, 14

Measuring Efficiency

• How might we determine the efficiency of
a program?

• Benchmarks tend to be too specific (new
hardware? How big of inputs do we
test?)

• Better approach: define a formula in
terms of the input size

Thursday, July 24, 14

Big O Notation
• A formula that gives an upper bound of

how expensive something is in the worst
case, in terms of an input size N

• Which is most efficient below?

O(1) // constant time

O(n) // linear time

O(n2) // quadratic time

Thursday, July 24, 14

O(1)
• Regardless of the size of the input, it takes

the same amount of time

0

1.25

2.50

3.75

5.00

1 10 20 30 40

“T
im

e”
 T

ak
en

Size of Input
Thursday, July 24, 14

O(N)

• The amount of time taken increases linearly
with the input size

0

10

20

30

40

1 10 20 30 40

“T
im

e”
 T

ak
en

Input Size
Thursday, July 24, 14

O(n2)

• The amount of time increases quadratically
with input size

0

500

1000

1500

2000

1 10 20 30 40

“T
im

e”
 T

ak
en

Size of Input
Thursday, July 24, 14

Determining Big O

int sum(int* arr, int length) {
 int s = 0, x;
 for (x = 0; x < length; x++) {
 s += arr[x];
 }
 return s;
}

Thursday, July 24, 14

Determining Big O

int sum(int* arr, int length) {
 int s = 0, x;
 for (x = 0; x < length; x++) {
 s += arr[x];
 }
 return s;
}

Constant time, done once. Call this c1.

Thursday, July 24, 14

Determining Big O

int sum(int* arr, int length) {
 int s = 0, x;
 for (x = 0; x < length; x++) {
 s += arr[x];
 }
 return s;
}

Constant time, done once. Call this c2.

Thursday, July 24, 14

Determining Big O

int sum(int* arr, int length) {
 int s = 0, x;
 for (x = 0; x < length; x++) {
 s += arr[x];
 }
 return s;
}

Constant time, done length times. Call this c3.

Thursday, July 24, 14

Determining Big O

int sum(int* arr, int length) {
 int s = 0, x;
 for (x = 0; x < length; x++) {
 s += arr[x];
 }
 return s;
}

Constant time, done length times. Call this c4.

Thursday, July 24, 14

Determining Big O

int sum(int* arr, int length) {
 int s = 0, x;
 for (x = 0; x < length; x++) {
 s += arr[x];
 }
 return s;
}

Constant time, done length times. Call this c5.

Thursday, July 24, 14

Determining Big O

int sum(int* arr, int length) {
 int s = 0, x;
 for (x = 0; x < length; x++) {
 s += arr[x];
 }
 return s;
}

Constant time, done once. Call this c6.

Thursday, July 24, 14

Determining Big O

• Putting it together, we get the formula:

c1 + c2 + (c3 * length) + (c4 * length)
+ (c5 * length) + c6

Thursday, July 24, 14

Determining Big O

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

c1 + c2 + (c3 * length) + (c4 * length)
+ (c5 * length) + c6

Thursday, July 24, 14

Determining Big O

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

1 + 1 + (1 * length) + (1 * length) +
(1 * length) + 1

Thursday, July 24, 14

Determining Big O

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

3 + length + length + length

Thursday, July 24, 14

Determining Big O

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

3 + 3(length)

Thursday, July 24, 14

Determining Big O

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

1 + length

Thursday, July 24, 14

Determining Big O

• With sums, we always choose the larger
sum

• A variable is always larger than a constant

1 + length

Thursday, July 24, 14

Determining Big O

• With sums, we always choose the larger
sum

• A variable is always larger than a constant

length

Thursday, July 24, 14

Determining Big O

• Observe that length is really N, the input
size

• For this example, we are done

length

Thursday, July 24, 14

Determining Big O

• Observe that length is really N, the input
size

• For this example, we are done

O(N)

Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done once. Call this c1.
Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done once. Call this c2.
Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length times. Call this c3.
Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length times. Call this c4.
Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length times. Call this c5.
Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length * length times.
Call this c6.

Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length * length times.
Call this c7.

Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length * length times.
Call this c8.

Thursday, July 24, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done once. Call this c9.
Thursday, July 24, 14

Putting it Together

• We are left with the following formula:

c1 + c2 + (length * c3) + (length * c4) +
(length * c5) + (length * length * c6) +

(length * length * c7) +
(length * length * c8) + c9

Thursday, July 24, 14

Putting it Together

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

c1 + c2 + (length * c3) + (length * c4) +
(length * c5) + (length * length * c6) +

(length * length * c7) +
(length * length * c8) + c9

Thursday, July 24, 14

Putting it Together

1 + 1 + (length * 1) + (length * 1) +
(length * 1) + (length * length * 1) +

(length * length * 1) +
(length * length * 1) + 1

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Thursday, July 24, 14

Putting it Together

3 + length + length + length + (length *
length) + (length * length) +

(length * length)

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Thursday, July 24, 14

Putting it Together

3 + 3(length) + 3(length * length)

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Thursday, July 24, 14

Putting it Together

1+ length + (length * length)

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Thursday, July 24, 14

Putting it Together

1+ length + length2

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Thursday, July 24, 14

Putting it Together

1+ length + length2

• With sums, we always choose the larger sum

• A variable is always larger than a constant

Thursday, July 24, 14

Putting it Together

length + length2

• With sums, we always choose the larger sum

• A variable is always larger than a constant

Thursday, July 24, 14

Putting it Together

length2

• With sums, we always choose the larger sum

• A variable is always larger than a constant

Thursday, July 24, 14

Putting it Together

length2

• Observe that length is really N, the input
size

• For this example, we are done

Thursday, July 24, 14

Putting it Together

O(N2)

• Observe that length is really N, the input
size

• For this example, we are done

Thursday, July 24, 14

Big O Heuristics

• A non-loop is often O(1)

• A single loop is often O(N)

• A singly nested loop is often O(N2)

• Not always true though - we will see
exceptions later in this class

• Determining time complexity can be
quite difficult in general

Thursday, July 24, 14

