CS24 Week 6 Lecture I Kyle Dewey

Overview

- Complexity and complexity analysis

Complexity

Complexity

- Up until this point, we have used terms like "efficiency","expensive", and "cheap"
int foo(int* array) return array[2] * array[3]; \}
int bar(int* array) \{
int x;
for ($x=0 ; x<M A X \quad S I Z E ; ~ x++$) \{ if (arra y[x] == 7) return x;
\}
return -1;
\}

Complexity

- Up until this point, we have used terms like "efficiency","expensive", and "cheap"
int foo(int* array) \{ return array[2] * array [3]; cheap(?) \}
int bar(int* array) \{
int x;
expensive(?)
for $(x=0 ; x<M A X \quad$ SIZE; $x++)$
\quad if (array $[x]==\overline{7})$ return $x ;$
\}
return -1;
\}

Ambiguous Terms

- Under what circumstances is this cheap?
- When is it expensive?

```
int bar(int* array) {
    int x;
    for(x = 0; x < MAX_SIZE; x++) {
        if (array[x] == 7) return x;
    }
    return -1;
}
```


"Expensive","Cheap", "Efficient"

- What is good about these terms?
- What is bad about these terms?
"Expensive","Cheap" "Efficient"
- What is good about these terms?
- Easy to understand
- What is bad about these terms?
- Imprecise
- Binary in nature (either cheap or expensive)
- Program efficiency is often dependent on input size

Measuring Efficiency

- How might we determine the efficiency of a program?

Measuring Efficiency

- How might we determine the efficiency of a program?
- Benchmarks tend to be too specific (new hardware? How big of inputs do we test?)
- Better approach: define a formula in terms of the input size

Big O Notation

- A formula that gives an upper bound of how expensive something is in the worst case, in terms of an input size N
- Which is most efficient below?
$O(1) / /$ constant time
$O(n) / /$ linear time
$O\left(n^{2}\right) / /$ quadratic time

O(1)

- Regardless of the size of the input, it takes the same amount of time

O (N)

- The amount of time taken increases linearly with the input size

$O\left(n^{2}\right)$

- The amount of time increases quadratically with input size

Determining Big O

int sum(int* arr, int length) \{
int $s=0, x ;$
for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{ $\mathrm{s}+=\operatorname{arr}[\mathrm{x}] ;$
\}
return s;
$\}$

Determining Big O

int sum(int* arr, int length) \{ int $s=0, x$; for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{ s += arr[x]; \} return s; \}

Constant time, done once. Call this C_{1}.

Determining Big O

int sum(int* arr, int length) \{ int $s=0, x ;$ for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{ s += arr[x]; \} return s; \}

Constant time, done once. Call this C_{2}.

Determining Big O

int sum(int* arr, int length) \{
int $s=0, x ;$ for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{ s += arr[x]; \}
return s;
$\}$

Constant time, done length times. Call this C_{3}.

Determining Big O

int sum(int* arr, int length) \{
int $s=0, x ;$ for ($x=0 ; x<$ length; $x++$) \{ s += arr[x]; \}
return s;
\}

Constant time, done length times. Call this C_{4}.

Determining Big O

int sum(int* arr, int length) \{
int $s=0, x ;$ for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{ s += arr[x]; \}
return s;
\}

Constant time, done length times. Call this C_{5}.

Determining Big O

int sum(int* arr, int length) \{ int $s=0, x$; for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{ s += arr[x];
\}
return s;
\}

Constant time, done once. Call this C_{6}.

Determining Big O

- Putting it together, we get the formula:

$$
\begin{aligned}
\mathrm{c} 1+\mathrm{c} 2 & +(\mathrm{c} 3 \star \text { length })+(\mathrm{c} 4 \star \text { length }) \\
& +(\mathrm{c5} \star \text { length })+\mathrm{c} 6
\end{aligned}
$$

Determining Big O

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned

$$
\begin{aligned}
& \mathrm{c} 1+\mathrm{c} 2+ \\
&+(\mathrm{c} 3 * \text { length })+(\mathrm{c} 4 * \text { length }) \\
&+(\mathrm{c5} * \text { length })+\mathrm{c} 6
\end{aligned}
$$

Determining Big O

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned

$$
\begin{array}{r}
1+1+(1 * \text { length })+(1 * \text { length })+ \\
(1 * \text { length })+1
\end{array}
$$

Determining Big O

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned

$$
3 \text { + length + length + length }
$$

Determining Big O

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned

$$
3+3 \text { (length) }
$$

Determining Big O

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned

$$
1 \text { + length }
$$

Determining Big O

- With sums, we always choose the larger sum
- A variable is always larger than a constant

$$
1 \text { + length }
$$

Determining Big O

- With sums, we always choose the larger sum
- A variable is always larger than a constant

> length

Determining Big O

- Observe that length is really N , the input size
- For this example, we are done

> length

Determining Big O

- Observe that length is really N , the input size
- For this example, we are done
$\mathrm{O}(\mathrm{N})$

Another Example

int sum2(int* arr, int length) \{
int $s=0, x, y ;$
for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{
for ($\mathrm{y}=0$; y < length; $\mathrm{y}++$) \{ s += arr[x] + arr[y]; \}
\}
return s;
\}

Another Example

int sum2(int* arr, int length) \{ int $s=0, x, y$; for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{ for ($\mathrm{y}=0$; y < length; $\mathrm{y}++$) \{ s += arr[x] + arr[y];
\}
\}
return s;
\}
Constant time, done once. Call this C_{1}.

Another Example

int sum2(int* arr, int length) \{
int $s=0, x, y ;$
for ($x=0 ; x<l e n g t h ; x++$) \{ for ($\mathrm{y}=0$; $\mathrm{y}<$ length; $\mathrm{y}++$) \{ s += arr[x] + arr[y]; \}
\}
return s;
\}
Constant time, done once. Call this C_{2}.

Another Example

int sum2 (int* arr, int length) \{ int $s=0, x, y$; for ($x=0 ; x<l e n g t h ; x++$) \{ for ($\mathrm{y}=0$; $\mathrm{y}<$ length; $\mathrm{y}++$) \{ s += arr[x] + arr[y]; \}
\}
return s;
\}

Constant time, done length times. Call this C_{3}.

Another Example

int sum2 (int* arr, int length) \{ int $s=0, x, y$; for ($x=0 ; x<l e n g t h ; x++$) \{ for ($\mathrm{y}=0$; y < length; $\mathrm{y}++$) \{ s += arr[x] + arr[y]; \}
\}
return s;
\}

Constant time, done length times. Call this C_{4}.

Another Example

int sum2 (int* arr, int length) \{ int $s=0, x, y$; for ($x=0 ; x<l e n g t h ; x++$) \{ for ($\mathrm{y}=0$; y < length; $\mathrm{y}++$) \{ s += arr[x] + arr[y]; \}
\}
return s;
\}

Constant time, done length times. Call this C_{5}.

Another Example

int sum2(int* arr, int length) \{
int $s=0, x, y ;$
for ($\mathrm{x}=0$; $\mathrm{x}<$ length; $\mathrm{x}++$) \{ for ($\mathrm{y}=0$; $\mathrm{y}<$ length; $\mathrm{y}++$) \{ s += arr[x] + arr[y]; \}
\}
return s;
\}
Constant time, done length * length times.
Call this C_{6}.

Another Example

int sum2 (int* arr, int length) \{
int $s=0, x, y ;$
for ($\mathrm{x}=0 ; \mathrm{x}<$ length; $\mathrm{x}++$) \{ for ($\mathrm{y}=0$; y < length; $\mathrm{y}++$) \{ s += arr[x] + arr[y]; \}
\}
return s;
\}
Constant time, done length * length times.
Call this C_{7}.

Another Example

int sum2(int* arr, int length) \{
int $s=0, x, y ;$
for ($x=0 ; x<l e n g t h ; x++$) \{
for ($\mathrm{y}=0$; y < length; y^{++}) \{ s += arr[x] + arr[y];
\}
\}
return s;
\}
Constant time, done length * length times.
Call this C_{8}.

Another Example

int sum2 (int* arr, int length) \{
int $s=0, x, y ;$
for ($x=0 ; x<l e n g t h ; x++$) \{ for ($\mathrm{y}=0$; $\mathrm{y}<$ length; $\mathrm{y}++$) \{ s += arr[x] + arr[y];
\}
\}
return s;
\}

Constant time, done once. Call this Cg.

Putting it Together

- We are left with the following formula:
$\mathrm{c}_{1}+\mathrm{C}_{2}+\left(\right.$ length $\left.* \mathrm{c}_{3}\right)+\left(\right.$ length $\left.* \mathrm{c}_{4}\right)+$ (length * C_{5}) + (length $*$ length * C_{6}) + (length * length * C_{7}) + (length * length * C_{8}) +C 9

Putting it Together

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned
$\mathrm{C}_{1}+\mathrm{C}_{2}+\left(\right.$ length $\left.* \mathrm{c}_{3}\right)+\left(\right.$ length $\left.* \mathrm{c}_{4}\right)+$
(length * C_{5}) + (length * length * C_{6}) + (length * length * C_{7}) + (length * length * C_{8}) $+\mathrm{C}_{9}$

Putting it Together

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned
$1+1+($ length * 1$)+($ length * 1$)+$
(length * 1) + (length * length * 1) + (length * length * 1) +
(length * length * 1) + 1

Putting it Together

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned

3 + length + length + length + (length * length) + (length * length) + (length * length)

Putting it Together

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned
$3+3$ (length) +3 (length * length)

Putting it Together

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned
1+ length + (length * length)

Putting it Together

- The specific values of constants are unimportant as long as they are positive
- We can replace all these with the value I as far as Big O notation is concerned

$$
1+\text { length }+ \text { length }{ }^{2}
$$

Putting it Together

- With sums, we always choose the larger sum
- A variable is always larger than a constant

$$
1+\text { length }+ \text { length }{ }^{2}
$$

Putting it Together

- With sums, we always choose the larger sum
- A variable is always larger than a constant

$$
\text { length }+ \text { length }{ }^{2}
$$

Putting it Together

- With sums, we always choose the larger sum
- A variable is always larger than a constant

> length²

Putting it Together

- Observe that length is really N , the input size
- For this example, we are done

length ${ }^{2}$

Putting it Together

- Observe that length is really N , the input size
- For this example, we are done
$\mathrm{O}\left(\mathrm{N}^{2}\right)$

Big O Heuristics

- A non-loop is often $O(1)$
- A single loop is often $O(N)$
- A singly nested loop is often $O\left(\mathrm{~N}^{2}\right)$
- Not always true though - we will see exceptions later in this class
- Determining time complexity can be quite difficult in general

