
CS24 Week 6 Lecture 2
Kyle Dewey

Tuesday, July 29, 14

Overview

• More complexity analysis

• Recursion

Tuesday, July 29, 14

More Complexity
Analysis

Tuesday, July 29, 14

Measuring Efficiency

• How might we determine the efficiency of
a program?

• Benchmarks tend to be too specific (new
hardware? How big of inputs do we
test?)

• Better approach: define a formula in
terms of the input size

Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done once. Call this c1.
Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done once. Call this c2.
Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length times. Call this c3.
Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length times. Call this c4.
Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length times. Call this c5.
Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length * length times.
Call this c6.

Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length * length times.
Call this c7.

Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done length * length times.
Call this c8.

Tuesday, July 29, 14

Another Example
int sum2(int* arr, int length) {
 int s = 0, x, y;
 for (x = 0; x < length; x++) {
 for (y = 0; y < length; y++) {
 s += arr[x] + arr[y];
 }
 }
 return s;
}

Constant time, done once. Call this c9.
Tuesday, July 29, 14

Putting it Together

• We are left with the following formula:

c1 + c2 + (length * c3) + (length * c4) +
(length * c5) + (length * length * c6) +

(length * length * c7) +
(length * length * c8) + c9

Tuesday, July 29, 14

Putting it Together

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

c1 + c2 + (length * c3) + (length * c4) +
(length * c5) + (length * length * c6) +

(length * length * c7) +
(length * length * c8) + c9

Tuesday, July 29, 14

Putting it Together

1 + 1 + (length * 1) + (length * 1) +
(length * 1) + (length * length * 1) +

(length * length * 1) +
(length * length * 1) + 1

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Tuesday, July 29, 14

Putting it Together

3 + length + length + length + (length *
length) + (length * length) +

(length * length)

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Tuesday, July 29, 14

Putting it Together

3 + 3(length) + 3(length * length)

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Tuesday, July 29, 14

Putting it Together

1+ length + (length * length)

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Tuesday, July 29, 14

Putting it Together

1+ length + length2

• The specific values of constants are
unimportant as long as they are positive

• We can replace all these with the value 1 as
far as Big O notation is concerned

Tuesday, July 29, 14

Putting it Together

1+ length + length2

• With sums, we always choose the larger sum

• A variable is always larger than a constant

Tuesday, July 29, 14

Putting it Together

length + length2

• With sums, we always choose the larger sum

• A variable is always larger than a constant

Tuesday, July 29, 14

Putting it Together

length2

• With sums, we always choose the larger sum

• A variable is always larger than a constant

Tuesday, July 29, 14

Putting it Together

length2

• Observe that length is really N, the input
size

• For this example, we are done

Tuesday, July 29, 14

Putting it Together

O(N2)

• Observe that length is really N, the input
size

• For this example, we are done

Tuesday, July 29, 14

Big O Heuristics

• A non-loop is often O(1)

• A single loop is often O(N)

• A singly nested loop is often O(N2)

• Not always true though - we will see
exceptions later in this class

• Determining time complexity can be
quite difficult in general

Tuesday, July 29, 14

Recursion

Tuesday, July 29, 14

Motivation

• A lot of problems are defined in terms of
themselves (recursive)

• You’re already familiar with a lot!

• These demand solutions which are
themselves recursive

Tuesday, July 29, 14

Recursion

• Defining a problem in terms of:

• Some simple trivial case

• A more complex case which ultimately
leads to the trivial case

• A way to define a problem in terms of itself

Tuesday, July 29, 14

Trivial Case

• Often called the “base” case

• It represents a simple form of the problem

Tuesday, July 29, 14

Recursive Case

• Defines problem in terms of itself

• Recursive cases should ultimately lead to
base cases

Tuesday, July 29, 14

My Two Cents on
Recursion

• Phrased as a problem strictly with
numbers, this seems magical and unintuitive

• Phrased as a problem over data structures,
this makes more sense

• Data structures themselves can have
recursive structure

• You’re been familiar with recursive data
structures, for many, many years

Tuesday, July 29, 14

Example: Arithmetic
Expressions

1

1 + 1

1 * 1

1 + (1 + 1)

(1 * 1) + 1

(1 * (1 + 1)) - 1
Tuesday, July 29, 14

Example: Arithmetic
Expressions

n is an Integer
e is an Expression
op is an Operator

op ::= + | - | * | /
e ::= n | e1 op e2

1
1 + 1

(1 + 1) + (1 * 1)

Tuesday, July 29, 14

Example: Arithmetic
Expressions

n is an Integer
e is an Expression
op is an Operator

op ::= + | - | * | /
e ::= n | e1 op e2

1
1 + 1

(1 + 1) + (1 * 1)

Base case?
Recursive

case?

Tuesday, July 29, 14

Example: Arithmetic
Expressions

n is an Integer
e is an Expression
op is an Operator

op ::= + | - | * | /
e ::= n | e1 op e2

1
1 + 1

(1 + 1) + (1 * 1)

Base Recursive

Tuesday, July 29, 14

Example: Arithmetic
Expression Evaluation
• A number evaluates to itself

• To evaluate an operation (e1 op e2):

• Evaluate e1 to a number n1

• Evaluate e2 to a number n2

• Evaluate n1 op n2

Tuesday, July 29, 14

Example: Natural
Language

• It is possible to take the majority of most
natural languages and express them in a
way that is similar to our arithmetic
expression representation

• A clause containing another clause...

Tuesday, July 29, 14

Example: Programming
Languages

• Most programming languages work this
way, too

• ifs can be nested in ifs...

• At some point, we have to stop nesting
the ifs, or else we won’t have a program

Tuesday, July 29, 14

Example: Linked Lists

• A linked list is either:

• An empty list

• A node holding an item (int below) and
a pointer to another list

List = Empty | int List

Tuesday, July 29, 14

Relationship to
Operations

• The recursive structure of applicable data
structures often mirrors the recursive
structure of operations on those data
structures

• Which cases might be interesting for a
linked list?

Tuesday, July 29, 14

Relationship to
Operations

• The recursive structure of applicable data
structures often mirrors the recursive
structure of operations on those data
structures

• Which cases might be interesting for a
linked list?

• Empty list (e.g., NULL)

• Non-empty list (a node)

Tuesday, July 29, 14

Example Problem

• Say we want to calculate the length of a
linked list recursively

• A list is represented as a Node*

• Base case?

• Length of list besides first element?

• Recursive case?

int length(Node* list);
Tuesday, July 29, 14

Example Problem
int length(Node* list) {
 if (list == NULL) {
 return 0; // base case
 } else {
 return (1 + // this node’s length
 // length of the rest of
 // the list
 length(list->getNext()));
 }
}

Tuesday, July 29, 14

Revised Problem
• Say we want to determine the length of a

list, but with a tweak: we also take the
length of the list so far

• Base case?

• Length of list besides first element?

• Recursive case?

• What does the initial call look like?

int firstCall(Node* list);
int length2(Node* list, int soFar);

Tuesday, July 29, 14

int length2(Node* list, int soFar) {
 if (list == NULL) {
 return soFar; // base case
 } else {
 // get the length of the rest of
 // the list, and say that the
 // length so far is + 1
 return length2(list->getNext(),
 soFar + 1);
 }
}

int firstCall(Node* list) {
 return length2(list, 0);
}

Tuesday, July 29, 14

Relationship to Loops

• length2 is more similar to an iterative
implementation than it may seem at first

• while dynamically inserts ifs as many
times as needed

• Recursion dynamically inserts the body of
a function as many times as needed

• After doing these expansions, they basically
look the same!

Tuesday, July 29, 14

Recursion With Arrays

Tuesday, July 29, 14

Recursion With Arrays

• If we look at arrays in a similar way as
linked lists, operations become more clear

• The index acts like a pointer to a particular
node

• What is the base case?

• Recursive case?

Tuesday, July 29, 14

Recursion With Arrays

• If we look at arrays in a similar way as
linked lists, operations become more clear

• The index acts like a pointer to a particular
node

• What is the base case?

• Index out of array

• Recursive case?

• Index in array
Tuesday, July 29, 14

Example

• Determine the sum of an array of integers,
starting from a particular index. An array
containing no elements has a sum of 0.

• Base case?

• Recursive case?

int sumFromIndex(int* array,
 int length,
 int index);

Tuesday, July 29, 14

Example

• Determine the sum of an array of integers,
starting from a particular index. An array
containing no elements has a sum of 0.

• Base case? - index out of bounds (0)

• Recursive case? - index in bounds
(current element + sum of rest)

int sumFromIndex(int* array,
 int length,
 int index);

Tuesday, July 29, 14

int sumFromIndex(int* array,
 int length,
 int index) {
 if (index >= length) return 0;
 else {
 int restSum =
 sumFromIndex(array, length,
 index + 1);
 return restSum + array[index];
 }
}

Tuesday, July 29, 14

Recursion Pros

• If your recursive case is always guaranteed
to reach a base case, infinite recursion is
impossible (appeals to induction)

• No more infinite loops!

• Vital for more complex recursive data
structures (e.g., trees)

• Easier to understand :)

Tuesday, July 29, 14

Recursion Cons

• If you’re not careful, you can run out of
stack space (a stack overflow)

• Not written in a tail-recursive way

• Compiler is too stupid to notice it’s tail-
recursive

• Very large input

Tuesday, July 29, 14

