CS24 Week 7 Lecture |

Kyle Dewey




® Recursion

Overview




Recursion

® Defining a problem in terms of:
® Some simple trivial case

® A more complex case which ultimately
leads to the trivial case

® A way to define a problem in terms of itself

Monday, August 4, 14



Example Problem

® Say we want to calculate the length of a
linked list recursively

® A listis represented as a Node*

® Base case!’

® |ength of 1ist besides first element!?

® Recursive case!

int length (Node* 1list);

Monday, August 4, 14



Example Problem

int length (Node* list) {

1f (list == NULL) {
return 0; // base case
} else {

return (1 + // this node’s length
// length of the rest of
// the list
length (list->getNext ()));

Monday, August 4, 14



Revised Problem

® Say we want to determine the length of a
list, but with a tweak: we also take the
length of the list so far

® Base case!

® |ength of 1ist besides first element!

® Recursive case!

® VWhat does the initial call look like?

int firstCall (Node* list);
int length2 (Node* list, i1nt soFar);

Monday, August 4, 14



int
1f

J

lengthZ (Node* 1list, 1nt soFar) {
(li1st == NULL) {

return soFar; // base case

else {

// get the length of the rest of

// the list, and say that the

// length so far is + 1

return length2 (list->getNext (),
sofar + 1);

int firstCall (Node* 1list) {
return length2(list, 0);

J

Monday, August 4, 14



Relationship to Loops

® length? is more similar to an iterative
implementation than it may seem at first

® while dynamically inserts i fs as many
times as needed

® Recursion dynamically inserts the body of
a function as many times as needed

® After doing these expansions, they basically
look the same!

Monday, August 4, 14



Recursion With Arrays




Recursion With Arrays

® |f we look at arrays in a similar way as
linked lists, operations become more clear

® The index acts like a pointer to a particular
node

® VWhat is the base case?

® Recursive case!

Monday, August 4, 14



Recursion With Arrays

® |f we look at arrays in a similar way as
linked lists, operations become more clear

® The index acts like a pointer to a particular
node

® \What is the base case?
® |ndex out of array
® Recursive case!?

® |ndex in array

Monday, August 4, 14



Example

® Determine the sum of an array of integers,
starting from a particular index. An array
containing no elements has a sum of 0.

® Base case!

® Recursive case!

int sumFromIndex (int* array,
int length,
1nt i1index);

Monday, August 4, 14



Example

® Determine the sum of an array of integers,
starting from a particular index. An array
containing no elements has a sum of 0.

® Base case! - index out of bounds (0)

® Recursive case! - index in bounds
(current element + sum of rest)

int sumFromIndex (int* array,
int length,
1nt i1index);

Monday, August 4, 14



int sumFromIndex (i1nt* array,
int length,
int 1ndex) {
1f (1ndex >= length) return 0O;
else {
int restSum =
sumkF'romIndex (array, length,
index + 1) ;
return restSum + array[index];

}

Monday, August 4, 14



Recursion Pros

® |f your recursive case is always guaranteed
to reach a base case, infinite recursion is
impossible (appeals to induction)

® No more infinite loops!

® Vital for more complex recursive data
structures (e.g., trees)

® Easier to understand :)

Monday, August 4, 14



Recursion Cons

® |f you're not careful, you can run out of
stack space (a stack overflow)

® Not written in a tail-recursive way

® Compiler is too stupid to notice it’s tail-
recursive

® Very large input

Monday, August 4, 14



Find the Problem




What's Wrong!

int length (Node* list) {
1f (list == NULL) {
return O;
} else {
return 1 + length(list);

J

Monday, August 4, 14



What's Wrong!

int length (Node* list) {
1f (list == NULL) {
return O;
} else {
return 1 + length(list);

J

Recursive case never reaches base case -
infinite recursion

Monday, August 4, 14



What's Wrong!

int helper (List* 1) {
1f (1l->getTai1l () !'= NULL) {
1->getTail () —>setNext (head) ;

}
return calcSum(l->getHead())

J

int calcSum (Node* n) {
1f (n == NULL) return O;
else return (n->getInt () +
calcSum (n->getNext ())) ;

J

Monday, August 4, 14



What's Wrong!

int helper (List* 1) {
1f (1l->getTai1l () !'= NULL) {
1->getTail () —>setNext (head) ;

}
return calcSum(l->getHead())

} Infinite recursion possible - list

may never have NULL in it
int calcSum (Node* n) {
1f (n == NULL) return O;
else return (n->getInt () +
calcSum (n->getNext ())) ;

Monday, August 4, 14



Additional Problems




More Array Recursion
Examples

® You may add helpers as necessary
bool containsInt(int* array,
int size, 1nt what);
int stringlLength (char* str);
vold setAllTo(int* array, 1nt size,
int toWhat);
bool allEqualThis(int* array, 1nt size,
int what);
int getProduct (1nt* array, 1nt size);

int largestElement (1nt* array,
int size); // 27

Monday, August 4, 14



More List Recursion
Examples

® You may add helpers as necessary

bool containsInt (Node* head,
int what);
vold setAllTo (Node* head, 1nt toWhat);
bool allEqualThis (Node* head,
int what);
1nt getProduct (Node* head);

int largestElement (Node* head); // 272

Monday, August 4, 14



