
CS24 Week 7 Lecture 1
Kyle Dewey

Monday, August 4, 14

Overview

• Recursion

Monday, August 4, 14

Recursion

• Defining a problem in terms of:

• Some simple trivial case

• A more complex case which ultimately
leads to the trivial case

• A way to define a problem in terms of itself

Monday, August 4, 14

Example Problem

• Say we want to calculate the length of a
linked list recursively

• A list is represented as a Node*

• Base case?

• Length of list besides first element?

• Recursive case?

int length(Node* list);
Monday, August 4, 14

Example Problem
int length(Node* list) {
 if (list == NULL) {
 return 0; // base case
 } else {
 return (1 + // this node’s length
 // length of the rest of
 // the list
 length(list->getNext()));
 }
}

Monday, August 4, 14

Revised Problem
• Say we want to determine the length of a

list, but with a tweak: we also take the
length of the list so far

• Base case?

• Length of list besides first element?

• Recursive case?

• What does the initial call look like?

int firstCall(Node* list);
int length2(Node* list, int soFar);

Monday, August 4, 14

int length2(Node* list, int soFar) {
 if (list == NULL) {
 return soFar; // base case
 } else {
 // get the length of the rest of
 // the list, and say that the
 // length so far is + 1
 return length2(list->getNext(),
 soFar + 1);
 }
}

int firstCall(Node* list) {
 return length2(list, 0);
}

Monday, August 4, 14

Relationship to Loops

• length2 is more similar to an iterative
implementation than it may seem at first

• while dynamically inserts ifs as many
times as needed

• Recursion dynamically inserts the body of
a function as many times as needed

• After doing these expansions, they basically
look the same!

Monday, August 4, 14

Recursion With Arrays

Monday, August 4, 14

Recursion With Arrays

• If we look at arrays in a similar way as
linked lists, operations become more clear

• The index acts like a pointer to a particular
node

• What is the base case?

• Recursive case?

Monday, August 4, 14

Recursion With Arrays

• If we look at arrays in a similar way as
linked lists, operations become more clear

• The index acts like a pointer to a particular
node

• What is the base case?

• Index out of array

• Recursive case?

• Index in array
Monday, August 4, 14

Example

• Determine the sum of an array of integers,
starting from a particular index. An array
containing no elements has a sum of 0.

• Base case?

• Recursive case?

int sumFromIndex(int* array,
 int length,
 int index);

Monday, August 4, 14

Example

• Determine the sum of an array of integers,
starting from a particular index. An array
containing no elements has a sum of 0.

• Base case? - index out of bounds (0)

• Recursive case? - index in bounds
(current element + sum of rest)

int sumFromIndex(int* array,
 int length,
 int index);

Monday, August 4, 14

int sumFromIndex(int* array,
 int length,
 int index) {
 if (index >= length) return 0;
 else {
 int restSum =
 sumFromIndex(array, length,
 index + 1);
 return restSum + array[index];
 }
}

Monday, August 4, 14

Recursion Pros

• If your recursive case is always guaranteed
to reach a base case, infinite recursion is
impossible (appeals to induction)

• No more infinite loops!

• Vital for more complex recursive data
structures (e.g., trees)

• Easier to understand :)

Monday, August 4, 14

Recursion Cons

• If you’re not careful, you can run out of
stack space (a stack overflow)

• Not written in a tail-recursive way

• Compiler is too stupid to notice it’s tail-
recursive

• Very large input

Monday, August 4, 14

Find the Problem

Monday, August 4, 14

int length(Node* list) {
 if (list == NULL) {
 return 0;
 } else {
 return 1 + length(list);
 }
}

What’s Wrong?

Monday, August 4, 14

int length(Node* list) {
 if (list == NULL) {
 return 0;
 } else {
 return 1 + length(list);
 }
}

What’s Wrong?

Recursive case never reaches base case -
infinite recursion

Monday, August 4, 14

What’s Wrong?
int helper(List* l) {
 if (l->getTail() != NULL) {
 l->getTail()->setNext(head);
 }
 return calcSum(l->getHead());
}

int calcSum(Node* n) {
 if (n == NULL) return 0;
 else return (n->getInt() +
 calcSum(n->getNext()));
}

Monday, August 4, 14

What’s Wrong?
int helper(List* l) {
 if (l->getTail() != NULL) {
 l->getTail()->setNext(head);
 }
 return calcSum(l->getHead());
}

int calcSum(Node* n) {
 if (n == NULL) return 0;
 else return (n->getInt() +
 calcSum(n->getNext()));
}

Infinite recursion possible - list
may never have NULL in it

Monday, August 4, 14

Additional Problems

Monday, August 4, 14

More Array Recursion
Examples

bool containsInt(int* array,
 int size, int what);
int stringLength(char* str);
void setAllTo(int* array, int size,
 int toWhat);
bool allEqualThis(int* array, int size,
 int what);
int getProduct(int* array, int size);

int largestElement(int* array,
 int size); // ??

• You may add helpers as necessary

Monday, August 4, 14

More List Recursion
Examples

bool containsInt(Node* head,
 int what);
void setAllTo(Node* head, int toWhat);
bool allEqualThis(Node* head,
 int what);
int getProduct(Node* head);

int largestElement(Node* head); // ??

• You may add helpers as necessary

Monday, August 4, 14

