CS24 Week 7 Lecture 2

Kyle Dewey

Overview

- Binary search
- Binary search trees

Motivation

- Say we have an array holding a million elements in arbitrary order
- How might we determine if a given element is contained within?

Linear Search

- Looking through all elements is often called a linear search or a linear scan
- What is the time complexity of this?

Linear Search

- Looking through all elements is often called a linear search or a linear scan
- What is the time complexity of this?
 - O(N)

Optimization

- What if we have the same array contents,
 but now they are in sorted order
- How might we take advantage of this?

- Start looking at the middlemost element
- If our element we are looking for is less than the middle element, then repeat this process on the lefthand side of the data
- If greater, repeat on the righthand side
- If equal, we found it
- If we have no data to look at, the element is not contained within

Looking for: 3

0 3 4 7 10 12 15

Looking for: 3

0 3 4 7 10 12 15

0 3 4 7 10 12 15

Example 2

Looking for: 10

0 3 4 7 10 12 15

Looking for: 10

10 < 7? false; look right

			▼			
0	3	4	7	10	12	15

Looking for: 10

true; look left 10 < 12?

0 3 4 7 10 12 15

Looking for: 10

true; found it! 10 == 10?

0 3 4 7 10 12 15

Example 3

Looking for: 5

0 3 4 7 10 12 15

Looking for: 5

true; look left 5 < 7?

0 3 4 7 10 12 15

Looking for: 5

0 3 4 7 10 12 15

Looking for: 5

5 < 3? false; look right

Binary Search

Looking for: 5

No possibilities remain - 5 is not within the array

0 3 4 7 10 12 15

Time Complexity

- Binary search has a special property: at each step, the total size of the input is cut in half
- Does this influence the time complexity?

Time Complexity

- Binary search has a special property: at each step, the total size of the input is cut in half
- Does this influence the time complexity?
 - Yes. An input size of N which is cut in half repeatedly shrinks rapidly

Time Complexity

- Repeatedly doubling something gets an exponential time complexity
- Here we do the opposite
- We end up with a logarithmic time complexity - O (log (N))

Arrays vs. Linked Lists

- We've been showing this for arrays, not for linked lists
- What sort of issues would a linked list representation have?

Arrays vs. Linked Lists

- We've been showing this for arrays, not for linked lists
- What sort of issues would a linked list representation have?
 - Cannot jump to a node in O(1), instead
 is O(N)

Binary Search With Linked Lists

- Binary search is O(log(N)) with arrays
- Accessing an arbitrary element of a linked list is O(N)
- What time complexity would binary search have on linked lists?

Binary Search With Linked Lists

- Binary search is O(log(N)) with arrays
- Accessing an arbitrary element of a linked list is O(N)
- What time complexity would binary search have on linked lists?
 - O(N * log(N)) worse than linear search!

Problem Setup

- Consider Facebook, with ~I billion users
 - Users added frequently
 - Users search for each other by name
- Addition and search should take milliseconds at most

Representation

- Addition and search should take milliseconds at most
 - What is wrong with an array?
 - What is wrong with a linked list?

Optimizing Addition

- Users should be able to be added within milliseconds
- How can we make this happen?

Optimizing Addition

- Users should be able to be added within milliseconds
- How can we make this happen?
 - Linked lists work well

Optimizing Search

- Users want to be able to search for other users by name within milliseconds
- How can we speed up search?

Optimizing Search

- Users want to be able to search for other users by name within milliseconds
- How can we speed up search?
 - Use binary search on an array

Conflicting Problems

- For rapid search, we want arrays
- For rapid addition, we want linked lists
- Need elements of both

Combining Both

- For rapid addition, linked data structures are best, like linked lists
- For rapid search, we need a way to split data in half efficiently, specifically in O(1)
- Let's revisit the binary search example and see what we can get out of it

0	3	4	7	10	12	15
---	---	---	---	----	----	----

Combining Both

- The lack of links prevents easy addition
 - We need links somewhere
- We need a way to quickly split data in half
- Any ideas?

0 3 4 7 10 12 15

 Idea: add links at points which would split the data in half

0 3 4 7 10 12 15

- Idea: add links at points which would split the data in half
 - Needs two links per node

Binary Search Tree

- This representation is known as a binary search tree
 - Binary: each node has two child nodes
 - Search: search is efficient
 - Tree: forms a tree (each node has at most one parent)

Search Example

Looking for: 10

true; look left

On Search

- At each point, we still cut the input in half
- Now, in order to get to the next half, we simply traverse a link \circ (1)
- Search is overall O (log (N)) as shown

Insertion

- Nodes need to be inserted in sorted order
- While duplicates are possible with some forms of trees, we consider a tree where duplicates are impossible
 - Trying to insert a duplicate changes nothing in the tree

Insertion Example

Insertion

Inserting: 5

Inserting: 5

false; look right

Inserting: 5

No node on right - insert here

Remaining Issues

- It turns out that we may not always split data in half with this
- After a long chain of insertions, the tree may become unbalanced, meaning we rarely split in half
- Inserting data that's already sorted into an empty tree sees this problem

Data Remaining: 1, 2, 3, 4, 5

Data Remaining: 2, 3, 4, 5

Data Remaining: 3, 4, 5

Data Remaining: 4, 5

Data Remaining: 5

Data Remaining: None

Big Problem

- Worst case, search and insertion are still O(N), because we do not guarantee the tree will split things up evenly
- There are ways to fix this to guarantee
 (log(N)) time complexity, but they are beyond this class