
CS24 Week 7 Lecture 2
Kyle Dewey

Wednesday, August 6, 14

Overview

• Binary search

• Binary search trees

Wednesday, August 6, 14

Binary Search

Wednesday, August 6, 14

Motivation

• Say we have an array holding a million
elements in arbitrary order

• How might we determine if a given element
is contained within?

Wednesday, August 6, 14

Linear Search

• Looking through all elements is often called
a linear search or a linear scan

• What is the time complexity of this?

Wednesday, August 6, 14

Linear Search

• Looking through all elements is often called
a linear search or a linear scan

• What is the time complexity of this?

•O(N)

Wednesday, August 6, 14

Optimization

• What if we have the same array contents,
but now they are in sorted order

• How might we take advantage of this?

Wednesday, August 6, 14

Binary Search

• Start looking at the middlemost element

• If our element we are looking for is less
than the middle element, then repeat this
process on the lefthand side of the data

• If greater, repeat on the righthand side

• If equal, we found it

• If we have no data to look at, the element is
not contained within

Wednesday, August 6, 14

Example 1

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 3

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 3

3 < 7?

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 3

3 < 7? true; look left

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 3

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 3

3 == 3?

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 3

3 == 3? true; found it!

Wednesday, August 6, 14

Example 2

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

10 < 7?

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

10 < 7? false; look right

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

10 < 12?

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

10 < 12?true; look left

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

10 == 10?

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 10

10 == 10?true; found it!

Wednesday, August 6, 14

Example 3

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

5 < 7?

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

5 < 7?true; look left

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

5 < 3?

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

5 < 3? false; look right

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

5 < 4?

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

5 < 4? false; look right

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

Wednesday, August 6, 14

Binary Search

0 3 4 7 10 12 15

Looking for: 5

No possibilities remain - 5 is not within
the array

Wednesday, August 6, 14

Time Complexity

• Binary search has a special property: at
each step, the total size of the input is cut
in half

• Does this influence the time complexity?

Wednesday, August 6, 14

Time Complexity

• Binary search has a special property: at
each step, the total size of the input is cut
in half

• Does this influence the time complexity?

• Yes. An input size of N which is cut in half
repeatedly shrinks rapidly

Wednesday, August 6, 14

Time Complexity

• Repeatedly doubling something gets an
exponential time complexity

• Here we do the opposite

• We end up with a logarithmic time
complexity - O(log(N))

Wednesday, August 6, 14

Arrays vs. Linked Lists

• We’ve been showing this for arrays, not for
linked lists

• What sort of issues would a linked list
representation have?

Wednesday, August 6, 14

Arrays vs. Linked Lists

• We’ve been showing this for arrays, not for
linked lists

• What sort of issues would a linked list
representation have?

• Cannot jump to a node in O(1), instead
is O(N)

Wednesday, August 6, 14

Binary Search With
Linked Lists

• Binary search is O(log(N)) with arrays

• Accessing an arbitrary element of a linked
list is O(N)

• What time complexity would binary search
have on linked lists?

Wednesday, August 6, 14

Binary Search With
Linked Lists

• Binary search is O(log(N)) with arrays

• Accessing an arbitrary element of a linked
list is O(N)

• What time complexity would binary search
have on linked lists?

• O(N * log(N)) - worse than linear
search!

Wednesday, August 6, 14

Binary Search Trees

Wednesday, August 6, 14

Motivation

Wednesday, August 6, 14

Problem Setup

• Consider Facebook, with ~1 billion users

• Users added frequently

• Users search for each other by name

• Addition and search should take
milliseconds at most

Wednesday, August 6, 14

Representation

• Addition and search should take
milliseconds at most

• What is wrong with an array?

• What is wrong with a linked list?

Wednesday, August 6, 14

Optimizing Addition

• Users should be able to be added within
milliseconds

• How can we make this happen?

Wednesday, August 6, 14

Optimizing Addition

• Users should be able to be added within
milliseconds

• How can we make this happen?

• Linked lists work well

Wednesday, August 6, 14

Optimizing Search

• Users want to be able to search for other
users by name within milliseconds

• How can we speed up search?

Wednesday, August 6, 14

Optimizing Search

• Users want to be able to search for other
users by name within milliseconds

• How can we speed up search?

• Use binary search on an array

Wednesday, August 6, 14

Conflicting Problems

• For rapid search, we want arrays

• For rapid addition, we want linked lists

• Need elements of both

Wednesday, August 6, 14

Combining Both

• For rapid addition, linked data structures
are best, like linked lists

• For rapid search, we need a way to split
data in half efficiently, specifically in O(1)

• Let’s revisit the binary search example and
see what we can get out of it

0 3 4 7 10 12 15

Wednesday, August 6, 14

0 3 4 7 10 12 15

• The lack of links prevents easy addition

• We need links somewhere

• We need a way to quickly split data in half

• Any ideas?

Combining Both

Wednesday, August 6, 14

• Idea: add links at points which would split
the data in half

0 3 4 7 10 12 15

Wednesday, August 6, 14

• Idea: add links at points which would split
the data in half

• Needs two links per node

0 3 4 7 10 12 15

7

3 12

0 4 10 15

Wednesday, August 6, 14

Binary Search Tree

• This representation is known as a binary
search tree

• Binary: each node has two child nodes

• Search: search is efficient

• Tree: forms a tree (each node has at most
one parent)

Wednesday, August 6, 14

Search Example

Wednesday, August 6, 14

Search
Looking for: 10

7

3 12

0 4 10 15

Wednesday, August 6, 14

Search
Looking for: 10

7

3 12

0 4 10 15

10 < 7?

Wednesday, August 6, 14

Search
Looking for: 10

7

3 12

0 4 10 15

10 < 7? false; look right

Wednesday, August 6, 14

Search
Looking for: 10

7

3 12

0 4 10 15

10 < 12?

Wednesday, August 6, 14

Search
Looking for: 10

7

3 12

0 4 10 15

10 < 12?

true; look left

Wednesday, August 6, 14

Search
Looking for: 10

7

3 12

0 4 10 15

10 == 10?

Wednesday, August 6, 14

Search
Looking for: 10

7

3 12

0 4 10 15

10 == 10?

true; item found!

Wednesday, August 6, 14

On Search

• At each point, we still cut the input in half

• Now, in order to get to the next half, we
simply traverse a link - O(1)

• Search is overall O(log(N)) as shown

Wednesday, August 6, 14

Insertion

• Nodes need to be inserted in sorted order

• While duplicates are possible with some
forms of trees, we consider a tree where
duplicates are impossible

• Trying to insert a duplicate changes
nothing in the tree

Wednesday, August 6, 14

Insertion Example

Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

5 < 7?

Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

5 < 7?
true; look left

Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

5 < 3?

Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

5 < 3?

false; look right

Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

5 < 4?

Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

5 < 4?

false; look right

Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

No node on right - insert here
Wednesday, August 6, 14

Insertion
Inserting: 5

7

3 12

0 4 10 15

5

Wednesday, August 6, 14

Remaining Issues

• It turns out that we may not always split
data in half with this

• After a long chain of insertions, the tree
may become unbalanced, meaning we rarely
split in half

• Inserting data that’s already sorted into an
empty tree sees this problem

Wednesday, August 6, 14

Already Sorted Data

Data Remaining: 1, 2, 3, 4, 5

Wednesday, August 6, 14

Already Sorted Data

Data Remaining: 2, 3, 4, 5

1

Wednesday, August 6, 14

Already Sorted Data

Data Remaining: 3, 4, 5

1

2

Wednesday, August 6, 14

Already Sorted Data

Data Remaining: 4, 5

1

2
3

Wednesday, August 6, 14

Already Sorted Data

Data Remaining: 5

1

2
3

4

Wednesday, August 6, 14

Already Sorted Data

Data Remaining: None

1

2
3

4
5

Wednesday, August 6, 14

Big Problem

• Worst case, search and insertion are still
O(N), because we do not guarantee the
tree will split things up evenly

• There are ways to fix this to guarantee
O(log(N)) time complexity, but they are
beyond this class

Wednesday, August 6, 14

