
CS24 Week 8 Lecture 1
Kyle Dewey

Tuesday, August 12, 14

Overview

• Tree terminology

• Tree traversals

• Implementation (if time)

Tuesday, August 12, 14

Terminology

Tuesday, August 12, 14

Node
• The most basic component of a tree - the

squares

7

3 12

0 4 10 15

Tuesday, August 12, 14

Edge
• The connections between nodes - the

arrows

7

3 12

0 4 10 15

Tuesday, August 12, 14

Parent / Child
• A parent is the predecessor of a node

• A child is the successor of a node

• Not all nodes have parents

• Not all nodes have children

7

3 12

(child of 7) (child of 7)

(parent of 3 and 12)

Tuesday, August 12, 14

Leaf / Terminal Node

• A node without any children

7

3 12

Tuesday, August 12, 14

Leaf / Terminal Node

• A node without any children

7

3 12

(leaf) (leaf)

Tuesday, August 12, 14

Internal Node

• A node with at least one child

7

3 12

Tuesday, August 12, 14

Internal Node

• A node with at least one child

7

3 12

(internal node)

Tuesday, August 12, 14

Root Node

• Node without any parent

• Often drawn as the topmost node

7

3 12

Tuesday, August 12, 14

Height and Depth

• Height: The number of edges on the longest
path from a node to a leaf

• Depth: the number of edges between a
node and the root node

Tuesday, August 12, 14

Height and Depth

http://stackoverflow.com/questions/2603692/what-is-the-difference-between-tree-depth-and-height

Tuesday, August 12, 14

http://stackoverflow.com/questions/2603692/what-is-the-difference-between-tree-depth-and-height
http://stackoverflow.com/questions/2603692/what-is-the-difference-between-tree-depth-and-height

Level
• All the nodes of a tree which have the

same depth

7

3 12

0 4 10 15

Tuesday, August 12, 14

Level
• All the nodes of a tree which have the

same depth

7

3 12

0 4 10 15

level 0

level 1

level 2
Tuesday, August 12, 14

k-ary Tree

• A tree where each node can have between
0 and k children

• What is k for a binary tree?

Tuesday, August 12, 14

k-ary Tree

• A tree where each node can have between
0 and k children

• What is k for a binary tree? - 2

Tuesday, August 12, 14

Full k-ary Tree

• All nodes have either 0 or k children

7

3 12

0 4 10 15

Tuesday, August 12, 14

Complete k-ary Tree
• Like a full k-ary tree, except the last level is

permitted to be missing nodes, but only
on the right

7

3 12

0 4

Tuesday, August 12, 14

Complete k-ary Tree

7

3 12

0 4

ok

• Like a full k-ary tree, except the last level is
permitted to be missing nodes, but only on
the right

Tuesday, August 12, 14

Complete k-ary Tree

7

3 12

0 10

• Like a full k-ary tree, except the last level is
permitted to be missing nodes, but only on
the right

Tuesday, August 12, 14

Complete k-ary Tree

7

3 12

0 10

not ok

• Like a full k-ary tree, except the last level is
permitted to be missing nodes, but only on
the right

Tuesday, August 12, 14

Balanced Tree
• For all nodes, the height of the left and

right subtrees differ by no more than one

7

3 12

0 4 10 15

Tuesday, August 12, 14

Balanced Tree
• For all nodes, the height of the left and

right subtrees differ by no more than one

7

3 12

0 4 10 15

ok

Tuesday, August 12, 14

Balanced Tree
• For all nodes, the height of the left and

right subtrees differ by no more than one

7

3 12

0 15

Tuesday, August 12, 14

Balanced Tree
• For all nodes, the height of the left and

right subtrees differ by no more than one

7

3 12

0 15

ok

Tuesday, August 12, 14

Balanced Tree
• For all nodes, the height of the left and

right subtrees differ by no more than one

7

12

10 15

Tuesday, August 12, 14

Balanced Tree
• For all nodes, the height of the left and

right subtrees differ by no more than one

7

12

10 15

not ok

Tuesday, August 12, 14

Subtree

• Nearly synonymous with node

• We recursively defined the tree to be
either a node with an element and two
children, or an empty tree (NULL)

• Generally refers to some subcomponent
of a larger tree, including recursive
subcomponents

Tuesday, August 12, 14

Subtree Example

7

3 12

0 4 10 15

Can refer
to 3 and

its
children

Cannot
just refer

to 3
Tuesday, August 12, 14

Traversals

Tuesday, August 12, 14

Traversals

• For many tree-related problems, the order
in which nodes are processed can have a
huge impact

• Two basic kinds: breadth-first search and
depth-first search

Tuesday, August 12, 14

Breath-First Search
(BFS)

• Tree is traversed as if nodes were words on
a page (top to bottom, left to right)

7

3 12

0 4 10 15

Tuesday, August 12, 14

Breath-First Search
(BFS)

• Tree is traversed as if nodes were words on
a page (top to bottom, left to right)

7

3 12

0 4 10 15

1

2 3

4 5 6 7

Tuesday, August 12, 14

Implementing BFS
• Question: how might we implement BFS?

• Hint: you’ll need a data structure you’ve
implemented before

7

3 12

0 4 10 15

1

2 3

4 5 6 7

Tuesday, August 12, 14

Implementing BFS

• Idea: put nodes on a queue

• Visit nodes according to the queue order

• When we are done with a node, put its
children onto the end of the queue

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: <<empty>>

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 7
Put root on the queue first (this is the node, not just the

number)

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 7
Now dequeue

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 7
Now dequeue

1

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: <<empty>>
Now dequeue

1

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: <<empty>>
Now put on the child nodes

1

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 3, 12
Now put on the child nodes

1

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 3, 12
Repeat

1

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 3, 12

1

2

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 12

1

2

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 12, 0, 4

1

2

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 12, 0, 4

1

2

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 12, 0, 4

1

2 3

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 0, 4

1

2 3

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 0, 4, 10, 15

1

2 3

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 0, 4, 10, 15

1

2 3

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 0, 4, 10, 15

1

2 3

4

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 4, 10, 15

1

2 3

4

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 4, 10, 15

1

2 3

4 5

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 10, 15

1

2 3

4 5

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 10, 15

1

2 3

4 5 6

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 15

1

2 3

4 5 6

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: 15

1

2 3

4 5 6 7

Tuesday, August 12, 14

Implementing BFS

7

3 12

0 4 10 15

root

Queue: <<empty>>

1

2 3

4 5 6 7

Tuesday, August 12, 14

Depth-First Search
(DFS)

• Favor going down towards the left first

7

3 12

0 4 10 15

1

2

3 4

5

6 7

Tuesday, August 12, 14

Implementing DFS
• Question: how might we implement DFS?

• Hint: you’ll need a data structure you’ve
implemented before

7

3 12

0 4 10 15

1

2

3 4

5

6 7

Tuesday, August 12, 14

Implementing DFS

• Idea: put nodes on a stack

• Visit nodes according to the stack order

• When we are done with a node, push its
children onto the top of the stack

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: <<empty>>

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 7

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 7

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 7

1

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: <<empty>>

1

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 3, 12

1

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 3, 12

1

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 3, 12

1

2

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 12

1

2

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 0, 4, 12

1

2

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 0, 4, 12

1

2

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 0, 4, 12

1

2

3

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 4, 12

1

2

3

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 4, 12

1

2

3 4

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 12

1

2

3 4

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 12

1

2

3 4

5

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: <<empty>>

1

2

3 4

5

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 10, 15

1

2

3 4

5

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 10, 15

1

2

3 4

5

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 10, 15

1

2

3 4

5

6

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 15

1

2

3 4

5

6

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: 15

1

2

3 4

5

6 7

Tuesday, August 12, 14

Implementing DFS

7

3 12

0 4 10 15

root

Stack: <<empty>>

1

2

3 4

5

6 7

Tuesday, August 12, 14

On Using Stacks

• We can cut out the explicit stack by using
the call stack implicitly via recursion

void traverse(Node* current) {
 if (current != NULL) {
 traverse(current->getLeft());
 traverse(current->getRight());
 }
}

Tuesday, August 12, 14

Specific Kinds of DFS
Traversals

• Depending on when we process the
current node, there are three general kinds
of DFS traversals:

• Pre-order: process current first

• In-order: process current between left
and right

• Post-order: process current after left and
right

Tuesday, August 12, 14

Pre-Order Traversal

void traverse(Node* current) {
 if (current != NULL) {
 process(current);
 traverse(current->getLeft());
 traverse(current->getRight());
 }
}

Tuesday, August 12, 14

In-Order Traversal

void traverse(Node* current) {
 if (current != NULL) {
 traverse(current->getLeft());
 process(current);
 traverse(current->getRight());
 }
}

Tuesday, August 12, 14

Post-Order Traversal

void traverse(Node* current) {
 if (current != NULL) {
 traverse(current->getLeft());
 traverse(current->getRight());
 process(current);
 }
}

Tuesday, August 12, 14

Using Traversals
• Say we want to print out the contents of a

binary search tree in sorted order

• What kind of traversal should we use?

7

3 12

0 4 10 15

Tuesday, August 12, 14

Using Traversals
• Say we want to print out the contents of a

binary search tree in sorted order

• What kind of traversal should we use? - in-
order

7

3 12

0 4 10 15

Tuesday, August 12, 14

Using Traversals
• Say we want to delete a binary search tree

• Which traversal is best?

7

3 12

0 4 10 15

Tuesday, August 12, 14

Using Traversals
• Say we want to delete a binary search tree

• Which traversal is best? - post-order

7

3 12

0 4 10 15

Tuesday, August 12, 14

