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Overview

• Tree terminology

• Tree traversals

• Implementation (if time)
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Terminology
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Node
• The most basic component of a tree - the 

squares
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Edge
• The connections between nodes - the 

arrows
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Parent / Child
• A parent is the predecessor of a node

• A child is the successor of a node

• Not all nodes have parents

• Not all nodes have children
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Leaf / Terminal Node

• A node without any children
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Leaf / Terminal Node

• A node without any children
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Internal Node

• A node with at least one child
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Internal Node

• A node with at least one child
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Root Node

• Node without any parent

• Often drawn as the topmost node
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Height and Depth

• Height: The number of edges on the longest 
path from a node to a leaf

• Depth: the number of edges between a 
node and the root node
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Height and Depth

http://stackoverflow.com/questions/2603692/what-is-the-difference-between-tree-depth-and-height
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http://stackoverflow.com/questions/2603692/what-is-the-difference-between-tree-depth-and-height
http://stackoverflow.com/questions/2603692/what-is-the-difference-between-tree-depth-and-height


Level
• All the nodes of a tree which have the 

same depth
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Level
• All the nodes of a tree which have the 

same depth
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level 1
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k-ary Tree

• A tree where each node can have between 
0 and k children

• What is k for a binary tree?
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k-ary Tree

• A tree where each node can have between 
0 and k children

• What is k for a binary tree? - 2
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Full k-ary Tree

• All nodes have either 0 or k children
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Complete k-ary Tree
• Like a full k-ary tree, except the last level is 

permitted to be missing nodes, but only 
on the right
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Complete k-ary Tree
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ok

• Like a full k-ary tree, except the last level is 
permitted to be missing nodes, but only on 
the right
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Complete k-ary Tree

7

3 12

0 10

• Like a full k-ary tree, except the last level is 
permitted to be missing nodes, but only on 
the right
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Complete k-ary Tree
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not ok

• Like a full k-ary tree, except the last level is 
permitted to be missing nodes, but only on 
the right
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Balanced Tree
• For all nodes, the height of the left and 

right subtrees differ by no more than one
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Balanced Tree
• For all nodes, the height of the left and 

right subtrees differ by no more than one
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Balanced Tree
• For all nodes, the height of the left and 

right subtrees differ by no more than one
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Balanced Tree
• For all nodes, the height of the left and 

right subtrees differ by no more than one
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Balanced Tree
• For all nodes, the height of the left and 

right subtrees differ by no more than one
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Balanced Tree
• For all nodes, the height of the left and 

right subtrees differ by no more than one
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Subtree

• Nearly synonymous with node

• We recursively defined the tree to be 
either a node with an element and two 
children, or an empty tree (NULL)

• Generally refers to some subcomponent 
of a larger tree, including recursive 
subcomponents
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Subtree Example
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Can refer 
to 3 and 

its 
children

Cannot 
just refer 

to 3
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Traversals
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Traversals

• For many tree-related problems, the order 
in which nodes are processed can have a 
huge impact

• Two basic kinds: breadth-first search and 
depth-first search
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Breath-First Search 
(BFS)

• Tree is traversed as if nodes were words on 
a page (top to bottom, left to right)
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Breath-First Search 
(BFS)

• Tree is traversed as if nodes were words on 
a page (top to bottom, left to right)
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Implementing BFS
• Question: how might we implement BFS?

• Hint: you’ll need a data structure you’ve 
implemented before
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Implementing BFS

• Idea: put nodes on a queue

• Visit nodes according to the queue order

• When we are done with a node, put its 
children onto the end of the queue
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Implementing BFS
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root

Queue:  <<empty>>
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Implementing BFS
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root

Queue:  7
Put root on the queue first (this is the node, not just the 

number)
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Implementing BFS
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root

Queue:  7
Now dequeue
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Implementing BFS
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root

Queue:  7
Now dequeue
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Implementing BFS
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root

Queue:  <<empty>>
Now dequeue
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Implementing BFS
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root

Queue:  <<empty>>
Now put on the child nodes
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Implementing BFS

7

3 12

0 4 10 15

root

Queue: 3, 12
Now put on the child nodes
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Implementing BFS
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root

Queue: 3, 12
Repeat
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Implementing BFS

7

3 12

0 4 10 15

root

Queue: 3, 12
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS
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Implementing BFS

7

3 12

0 4 10 15

root

Queue: 10, 15

1

2 3

4 5 6

Tuesday, August 12, 14



Implementing BFS

7

3 12

0 4 10 15

root

Queue: 15

1

2 3

4 5 6

Tuesday, August 12, 14



Implementing BFS
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Implementing BFS
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Queue: <<empty>>
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Depth-First Search 
(DFS)

• Favor going down towards the left first
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Implementing DFS
• Question: how might we implement DFS?

• Hint: you’ll need a data structure you’ve 
implemented before
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Implementing DFS

• Idea: put nodes on a stack

• Visit nodes according to the stack order

• When we are done with a node, push its 
children onto the top of the stack

Tuesday, August 12, 14



Implementing DFS
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root

Stack:  <<empty>>
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Implementing DFS
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root

Stack:  7
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Implementing DFS
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Implementing DFS
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Stack:  7
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Implementing DFS
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Stack:  <<empty>>
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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Implementing DFS
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On Using Stacks

• We can cut out the explicit stack by using 
the call stack implicitly via recursion

void traverse(Node* current) {
  if (current != NULL) {
    traverse(current->getLeft());
    traverse(current->getRight());
  }
}
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Specific Kinds of DFS 
Traversals

• Depending on when we process the 
current node, there are three general kinds 
of DFS traversals:

• Pre-order: process current first

• In-order: process current between left 
and right

• Post-order: process current after left and 
right
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Pre-Order Traversal

void traverse(Node* current) {
  if (current != NULL) {
    process(current);
    traverse(current->getLeft());
    traverse(current->getRight());
  }
}
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In-Order Traversal

void traverse(Node* current) {
  if (current != NULL) {
    traverse(current->getLeft());
    process(current);
    traverse(current->getRight());
  }
}
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Post-Order Traversal

void traverse(Node* current) {
  if (current != NULL) {
    traverse(current->getLeft());
    traverse(current->getRight());
    process(current);
  }
}
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Using Traversals
• Say we want to print out the contents of a 

binary search tree in sorted order

• What kind of traversal should we use?
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Using Traversals
• Say we want to print out the contents of a 

binary search tree in sorted order

• What kind of traversal should we use? - in-
order
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Using Traversals
• Say we want to delete a binary search tree

• Which traversal is best?
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Using Traversals
• Say we want to delete a binary search tree

• Which traversal is best? - post-order
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