
CS24 Week 8 Lecture 2
Kyle Dewey

Wednesday, August 13, 14

Overview

• Depth-first traversals

• Removing elements from a BST

• Priority queues

• Heaps

Wednesday, August 13, 14

Depth-First Traversals

Wednesday, August 13, 14

On Using Stacks

• We can cut out the explicit stack by using
the call stack implicitly via recursion

void traverse(Node* current) {
 if (current != NULL) {
 traverse(current->getLeft());
 traverse(current->getRight());
 }
}

Wednesday, August 13, 14

Specific Kinds of DFS
Traversals

• Depending on when we process the
current node, there are three general kinds
of DFS traversals:

• Pre-order: process current first

• In-order: process current between left
and right

• Post-order: process current after left and
right

Wednesday, August 13, 14

Pre-Order Traversal

void traverse(Node* current) {
 if (current != NULL) {
 process(current);
 traverse(current->getLeft());
 traverse(current->getRight());
 }
}

Wednesday, August 13, 14

In-Order Traversal

void traverse(Node* current) {
 if (current != NULL) {
 traverse(current->getLeft());
 process(current);
 traverse(current->getRight());
 }
}

Wednesday, August 13, 14

Post-Order Traversal

void traverse(Node* current) {
 if (current != NULL) {
 traverse(current->getLeft());
 traverse(current->getRight());
 process(current);
 }
}

Wednesday, August 13, 14

Using Traversals
• Say we want to print out the contents of a

binary search tree in sorted order

• What kind of traversal should we use?

7

3 12

0 4 10 15

Wednesday, August 13, 14

Using Traversals
• Say we want to print out the contents of a

binary search tree in sorted order

• What kind of traversal should we use? - in-
order

7

3 12

0 4 10 15

Wednesday, August 13, 14

Using Traversals
• Say we want to delete a binary search tree

• Which traversal is best?

7

3 12

0 4 10 15

Wednesday, August 13, 14

Using Traversals
• Say we want to delete a binary search tree

• Which traversal is best? - post-order

7

3 12

0 4 10 15

Wednesday, August 13, 14

Removing BST
Elements

Wednesday, August 13, 14

Removing Elements

• Say we want to remove 4. Any problems?

7

3 12

0 4 10 15

Wednesday, August 13, 14

Removing Elements

• Say we want to remove 4. Any problems? - no

7

3 12

0 10 15

Wednesday, August 13, 14

Removing Elements
• Say we want to remove 7 - any problems?

7

3 12

0 4 10 15

Wednesday, August 13, 14

Removing Elements

• Say we want to remove 7 - any problems?

• Both 3 and 12 cannot be a root

7

3 12

0 4 10 15

???

Wednesday, August 13, 14

Removing Elements
• Removing 7

• Let’s try making 12 a root...

7

3 12

0 4 10 15

Wednesday, August 13, 14

Removing Elements
• Removing 7

• Let’s try making 12 a root...

3 12

0 4 10 15

Wednesday, August 13, 14

Removing Elements
• Removing 7

• Let’s try making 12 a root...

3

12

0 4 10

15

Wednesday, August 13, 14

Removing Elements
• Removing 7

• Let’s try making 12 a root...

3

12

0 4 10

15

Other than
the missing

10, this move
will always

work. Why?

Wednesday, August 13, 14

Removing Elements
• Removing 7

• Let’s try making 12 a root...

3

12

0 4 10

15

Other than
the missing

10, this move
will always

work. Why?

All elements
in the left

subtree are
guaranteed
to be less
than 12

Wednesday, August 13, 14

Removing Elements
• Now we need to put 10 back

• 10 could be an arbitrarily deep subtree

• Always goes into the same position - where?

3

12

0 4 10

15

Wednesday, August 13, 14

Removing Elements

3

12

0 4

10

15

Goes to the rightmost
position here always.

Why?

Wednesday, August 13, 14

Removing Elements

3

12

0 4

10

15

Goes to the rightmost
position here always.

Why?

Guaranteed that
10 is

greater than
anything on
the subtree

beginning with 3

Wednesday, August 13, 14

Deletion Issues

• Algorithm described prior is somewhat
tricky to implement, and easily leads to
unbalanced trees

• A better strategy follows

Wednesday, August 13, 14

Alternative

• Deleting 7

7

3 12

0 4 10 15

Wednesday, August 13, 14

Alternative
• Get the greatest node less than 7 (always

on far left subtree)

7

3 12

0 4 10 15

Wednesday, August 13, 14

Alternative

• Copy its value to the node being deleted

3 12

0 10 154

4

Wednesday, August 13, 14

Alternative
• Recursively delete the copied element from

the left subtree

3 12

0 10 154

4delete 4

Wednesday, August 13, 14

Alternative
• We are guaranteed to eventually reach a

leaf node (a base case)

3 12

0 10 154

4delete 4

Wednesday, August 13, 14

Alternative
• We are guaranteed to eventually reach a

leaf node (a base case)

3 12

0 10 15

4delete 4

Wednesday, August 13, 14

Priority Queues

Wednesday, August 13, 14

Motivation

• Consider a hospital emergency room

• Three patients arrive with specific
problems in the following order:

• Minor cough

• Light skin irritation

• Anaphylactic shock

• How can we prioritize them?

Wednesday, August 13, 14

Prioritization

• Stack makes no sense in general (whoever
gets there last always gets treatment first)

• Queue makes some sense (get treatment in
order of arrival)

• Not good for life-threatening situations

• Need a new data structure to handle this

Wednesday, August 13, 14

Priority Queue

• Like a queue, but elements are associated
with a given priority

• We always want to dequeue the highest
priority element

• How might we implement this?

Wednesday, August 13, 14

Implementation #1

• Use a simple linked list

• On dequeue, remove the element from the
list with the highest priority

• Enqueue time complexity?

• Dequeue time complexity?

Wednesday, August 13, 14

Implementation #1

• Use a simple linked list

• On dequeue, remove the element from the
list with the highest priority

• Enqueue time complexity? - O(1)

• Dequeue time complexity? - O(N)

Wednesday, August 13, 14

Implementation #2

• Using a linked list, keep elements in
descending sorted order

• Always dequeue from the front

• Enqueue time complexity?

• Dequeue time complexity?

Wednesday, August 13, 14

Implementation #2

• Using a linked list, keep elements in
descending sorted order

• Always dequeue from the front

• Enqueue time complexity? - O(N)

• Dequeue time complexity? - O(1)

Wednesday, August 13, 14

Problems

• Somewhere we have an O(N) operation
buried

• Any ideas for speeding this up?

Wednesday, August 13, 14

Heaps

Wednesday, August 13, 14

Heap

• Not a binary search tree; just a binary tree

• Always have the maximal (or minimal)
element at the root

• Support removing the root element in
O(log(N)), and adding elements in
O(log(N))

Wednesday, August 13, 14

Heap Property

• A binary tree has the heap property if:

• It is empty

• Its value is greater than or equal to both
of its children, and the children have the
heap property

Wednesday, August 13, 14

Example

10

5 8

4 3 7 2

Wednesday, August 13, 14

Advantage

• Heaps always have the highest priority
element on top, so we always have easy
access to it

10

5 8

4 3 7 2

Wednesday, August 13, 14

Additional Invariant

• In practice, heaps are always complete

• What does this mean?

Wednesday, August 13, 14

Additional Invariant
• In practice, heaps are always complete

• What does this mean? - full except for
the last row

10

5 8

4 3

Wednesday, August 13, 14

Enqueue
• If the tree is complete, we can enqueue by

putting the element on the end

• Not done yet - could violate heap property

10

5 8

4 3 9

Wednesday, August 13, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5 8

4 3 9

Wednesday, August 13, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5 8

4 3 9

9 < 8?

Wednesday, August 13, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5 8

4 3 9
9 < 8? - false;

bubble up

Wednesday, August 13, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5

84 3

9

Wednesday, August 13, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5

84 3

9

9 < 10?

Wednesday, August 13, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5

84 3

9

9 < 10? - true; done

Wednesday, August 13, 14

Dequeue

• After getting the element from the top of
the tree, we must restore the heap

10

5 8

4 3

Wednesday, August 13, 14

Dequeue

• After getting the element from the top of
the tree, we must restore the heap

10

5 8

4 3

Wednesday, August 13, 14

Dequeue

• After getting the element from the top of
the tree, we must restore the heap

5 8

4 3

Wednesday, August 13, 14

Dequeue
• After getting the element from the top of

the tree, we must restore the heap

• Idea: swap in the last node from the last
level

5 8

4 3

Wednesday, August 13, 14

Dequeue
• After getting the element from the top of

the tree, we must restore the heap

• Idea: swap in the last node from the last
level

5 8

4

3

Wednesday, August 13, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

3

Wednesday, August 13, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

33 > 8?

Wednesday, August 13, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

3
3 > 8? - false;

need to bubble down

Wednesday, August 13, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

3

5 > 8?

Wednesday, August 13, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

3

5 > 8?
false; swap and

bubble down on right

Wednesday, August 13, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5

8

4

3

Wednesday, August 13, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5

8

4

3

base case - no children;
done bubbling down

Wednesday, August 13, 14

Time Complexity

• Because we force the construction to be
complete, we get balanced trees

• Dequeue and enqueue are both
O(log(N)) as a result

Wednesday, August 13, 14

Optimization
• Heaps can be concisely represented with

arrays

10

5 8

4 3

10 5 8 4 3As Array

As Tree 0

1 2

3 4

Wednesday, August 13, 14

Advantages of Arrays

• What sort of advantages does an array
representation have?

Wednesday, August 13, 14

Advantages of Arrays

• What sort of advantages does an array
representation have?

• Overall simpler

• Less space consumed for the same data

• Getting the last node at the last level is just
getting the last valid element in the array

• (Advanced) CPUs are much happier with
arrays than trees (i.e., better performance)

Wednesday, August 13, 14

Disadvantages of Arrays

• What sort of issues does the array
representation have?

Wednesday, August 13, 14

Disadvantages of Arrays

• What sort of issues does the array
representation have?

• Adding elements is more difficult; may
entail reallocating the whole array

• In practice, this is very minor compared
to all the other advantages

Wednesday, August 13, 14

