
CS24 Week 9 Lecture 1
Kyle Dewey

Tuesday, August 19, 14

Overview

• Heaps

• Hash tables

Tuesday, August 19, 14

Heaps

Tuesday, August 19, 14

Heap

• Not a binary search tree; just a binary tree

• Always have the maximal (or minimal)
element at the root

• Support removing the root element in
O(log(N)), and adding elements in
O(log(N))

Tuesday, August 19, 14

Heap Property

• A binary tree has the heap property if:

• It is empty

• Its value is greater than or equal to both
of its children, and the children have the
heap property

Tuesday, August 19, 14

Example

10

5 8

4 3 7 2

Tuesday, August 19, 14

Advantage

• Heaps always have the highest priority
element on top, so we always have easy
access to it

10

5 8

4 3 7 2

Tuesday, August 19, 14

Additional Invariant

• In practice, heaps are always complete

• What does this mean?

Tuesday, August 19, 14

Additional Invariant
• In practice, heaps are always complete

• What does this mean? - full except for
the last row

10

5 8

4 3

Tuesday, August 19, 14

Enqueue
• If the tree is complete, we can enqueue by

putting the element on the end

• Not done yet - could violate heap property

10

5 8

4 3 9

Tuesday, August 19, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5 8

4 3 9

Tuesday, August 19, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5 8

4 3 9

9 < 8?

Tuesday, August 19, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5 8

4 3 9
9 < 8? - false;

bubble up

Tuesday, August 19, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5

84 3

9

Tuesday, August 19, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5

84 3

9

9 < 10?

Tuesday, August 19, 14

Enqueue
• To restore the heap property, we can bubble

up - ensure the heap property holds stepwise
with parents, and swap if not

10

5

84 3

9

9 < 10? - true; done

Tuesday, August 19, 14

Dequeue

• After getting the element from the top of
the tree, we must restore the heap

10

5 8

4 3

Tuesday, August 19, 14

Dequeue

• After getting the element from the top of
the tree, we must restore the heap

10

5 8

4 3

Tuesday, August 19, 14

Dequeue

• After getting the element from the top of
the tree, we must restore the heap

5 8

4 3

Tuesday, August 19, 14

Dequeue
• After getting the element from the top of

the tree, we must restore the heap

• Idea: swap in the last node from the last
level

5 8

4 3

Tuesday, August 19, 14

Dequeue
• After getting the element from the top of

the tree, we must restore the heap

• Idea: swap in the last node from the last
level

5 8

4

3

Tuesday, August 19, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

3

Tuesday, August 19, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

33 > 8?

Tuesday, August 19, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

3
3 > 8? - false;

need to bubble down

Tuesday, August 19, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

3

5 > 8?

Tuesday, August 19, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5 8

4

3

5 > 8?
false; swap and

bubble down on right

Tuesday, August 19, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5

8

4

3

Tuesday, August 19, 14

Dequeue

• In order to restore the heap property, we
must bubble down - swap with the greatest
of the children recursively

5

8

4

3

base case - no children;
done bubbling down

Tuesday, August 19, 14

Time Complexity

• Because we force the construction to be
complete, we get balanced trees

• Dequeue and enqueue are both
O(log(N)) as a result

Tuesday, August 19, 14

Optimization
• Heaps can be concisely represented with

arrays

10

5 8

4 3

10 5 8 4 3As Array

As Tree 0

1 2

3 4

Tuesday, August 19, 14

Advantages of Arrays

• What sort of advantages does an array
representation have?

Tuesday, August 19, 14

Advantages of Arrays

• What sort of advantages does an array
representation have?

• Overall simpler

• Less space consumed for the same data

• Getting the last node at the last level is just
getting the last valid element in the array

• (Advanced) CPUs are much happier with
arrays than trees (i.e., better performance)

Tuesday, August 19, 14

Disadvantages of Arrays

• What sort of issues does the array
representation have?

Tuesday, August 19, 14

Disadvantages of Arrays

• What sort of issues does the array
representation have?

• Adding elements is more difficult; may
entail reallocating the whole array

• In practice, this is very minor compared
to all the other advantages

Tuesday, August 19, 14

Hash Tables

Tuesday, August 19, 14

Motivation

• Maps are a very common data structure

• Given a key, give me its corresponding
value (lookup)

• Add in a new value associated with some
key (add)

• E.g., an address book

Tuesday, August 19, 14

Motivation

• We want the lookup and add operations to
be as fast as possible

• How might we implement these?

Tuesday, August 19, 14

Motivation

• We want the lookup and add operations to
be as fast as possible

• How might we implement these?

• Could use a binary search tree - O(N)

• Force the tree to be balanced -
O(log(N))

Tuesday, August 19, 14

Tree Style

• We could get O(log(N)) performance

• Still some issues - what?

Tuesday, August 19, 14

Tree Style

• We could get O(log(N)) performance

• Still some issues - what?

• Need to perform O(log(N))
comparisons, and comparisons may not
be cheap

• Performance-wise, O(1) would be better

Tuesday, August 19, 14

Doing Better

• What data structure is needed for O(1)
lookups?

Tuesday, August 19, 14

Doing Better

• What data structure is needed for O(1)
lookups?

• Arrays

Tuesday, August 19, 14

Using Arrays

• Not obvious how we might utilize arrays
for this

• First, a simplifying assumption: all keys are
integers >= 0

• How can we take advantage of this?

Tuesday, August 19, 14

Using Arrays

• Not obvious how we might utilize arrays
for this

• First, a simplifying assumption: all keys are
integers >= 0

• How can we take advantage of this?

• Use keys as indices!

Tuesday, August 19, 14

Example

• The following example uses integers >=0
for keys and characters for values

Tuesday, August 19, 14

Example

-1 -1 -1 -1 -1

Initial array
contents: all -1
(indicator that
the space is

unused) 0

Array

Indices1 2 3 4

Tuesday, August 19, 14

Example

-1 -1 -1 -1 -1

0

Array

Indices1 2 3 4

insert(3, ‘g’)

Tuesday, August 19, 14

Example

-1 -1 -1 g -1

0

Array

Indices1 2 3 4

insert(3, ‘g’)

Tuesday, August 19, 14

Example

-1 -1 -1 g -1

0

Array

Indices1 2 3 4

insert(1, ‘f’)

Tuesday, August 19, 14

Example

-1 f -1 g -1

0

Array

Indices1 2 3 4

insert(1, ‘f’)

Tuesday, August 19, 14

Example

-1 f -1 g -1

0

Array

Indices1 2 3 4

insert(10, ‘k’)

Tuesday, August 19, 14

Example

-1 f -1 g -1

0

Array

Indices1 2 3 4

insert(10, ‘k’)

No index 10!
What do we

do?

Tuesday, August 19, 14

Fixing Index Out of
Bounds

• We might have a key whose index is out of
bounds for the array

• How can we fix this?

Tuesday, August 19, 14

Fixing Index Out of
Bounds

• We might have a key whose index is out of
bounds for the array

• How can we fix this?

• Resizing is suboptimal - may have key
100,000

• Modular arithmetic - insert at key %
arraySize, which guarantees it will be
in bounds

Tuesday, August 19, 14

Example

-1 f -1 g -1

0

Array

Indices1 2 3 4

insert(10, ‘k’)

No index 10!
What do we

do?

Tuesday, August 19, 14

Example

-1 f -1 g -1

0

Array

Indices1 2 3 4

insert(10, ‘k’)

10 % 5 == 0

Tuesday, August 19, 14

Example

k f -1 g -1

0

Array

Indices1 2 3 4

insert(10, ‘k’)

10 % 5 == 0

Tuesday, August 19, 14

Example

k f -1 g -1

0

Array

Indices1 2 3 4

insert(11, ‘o’)

Tuesday, August 19, 14

Example

k f -1 g -1

0

Array

Indices1 2 3 4

insert(11, ‘o’)

11 % 5 == 1

Tuesday, August 19, 14

Example

k f -1 g -1

0

Array

Indices1 2 3 4

insert(11, ‘o’)

11 % 5 == 1

Problem - we
already have

something at 1.
Additionally, f
was inserted

with a different
key (1). Both
now belong at
this position.

Tuesday, August 19, 14

Collision Problem

• We have multiple entries that belong in the
same slot, even though they have different
keys

• Downside of using modular arithmetic

• How might we fix this?

Tuesday, August 19, 14

Collision Problem

• We have multiple entries that belong in the
same slot, even though they have different
keys

• Downside of using modular arithmetic

• How might we fix this?

• Store a linked list at this position of key/
value pairs

Tuesday, August 19, 14

Example

k f -1 g -1

0

Array

Indices1 2 3 4

insert(11, ‘o’)

11 % 5 == 1

Problem - we
already have

something at 1.
Additionally, f
was inserted

with a different
key (1). Both
now belong at
this position.

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

insert(11, ‘o’)

11 % 5 == 1

k,10

X

f,1

X

g,3

X

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

insert(11, ‘o’)

11 % 5 == 1

k,10

X

f,1 g,3

X
o,11

X

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(11)

k,10

X

f,1 g,3

X
o,11

X

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(11)

k,10

X

f,1 g,3

X
o,11

X
11 % 5 == 1

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(11)

k,10

X

f,1 g,3

X
o,11

X
11 % 5 == 1

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(11)

k,10

X

f,1 g,3

X
o,11

X
11 % 5 == 1

1 == 11?

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(11)

k,10

X

f,1 g,3

X
o,11

X
11 % 5 == 1

1 == 11?
false;

continue
Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(11)

k,10

X

f,1 g,3

X
o,11

X
11 % 5 == 1

11 == 11?

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(11)

k,10

X

f,1 g,3

X
o,11

X
11 % 5 == 1

11 == 11?
true;
found

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(8)

k,10

X

f,1 g,3

X
o,11

X

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(8)

k,10

X

f,1 g,3

X
o,11

X
8 % 5 == 3

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(8)

k,10

X

f,1 g,3

X
o,11

X
8 % 5 == 3

8 == 3?

Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(8)

k,10

X

f,1 g,3

X
o,11

X
8 % 5 == 3

8 == 3?
false;

continue
Tuesday, August 19, 14

Example

X X

0

Array

Indices1 2 3 4

lookup(8)

k,10

X

f,1 g,3

X
o,11

X
8 % 5 == 3

End of
list; key

not
contained

Tuesday, August 19, 14

Lifting Restriction

• To make progress, we had assumed that
keys were positive integers

• How might we extend this to arbitrary
keys?

Tuesday, August 19, 14

Lifting Restriction

• To make progress, we had assumed that
keys were positive integers

• How might we extend this to arbitrary
keys?

• Idea: an alternative numeric
representation for everything which
behaves as a key

Tuesday, August 19, 14

Hash Codes
• A way of getting a numeric representation

for some non-numeric data

• We can determine which slot a key goes
into based on its hash code

int stringHashCode(char* str) {
 int retval = 0;
 for(int x = 0;
 x < strlen(str);
 x++) retval += str[x];
 return retval;
}

Tuesday, August 19, 14

On Performance

• What time complexity do lookups and
additions have?

Tuesday, August 19, 14

On Performance

• What time complexity do lookups and
additions have?

• O(N)! Worse than the O(log(N)) we
were trying to beat!

• Why is this happening?

Tuesday, August 19, 14

On Performance

• What time complexity do lookups and
additions have?

• O(N)! Worse than the O(log(N)) we
were trying to beat!

• Why is this happening?

• Worst case, all keys end up in the same
slot (bucket), and this degrades into a
linked list

Tuesday, August 19, 14

Degradation

• What circumstances make it more likely
that a hash table turns into a linked list?

Tuesday, August 19, 14

Degradation

• What circumstances make it more likely that a
hash table turns into a linked list?

• Small array - more keys compete for fewer
slots (buckets)

• Hash function claims the majority of the keys
are in the same bucket, e.g. return 0;

Tuesday, August 19, 14

Small Array

• How can we address the issue with the
array being small?

Tuesday, August 19, 14

Small Array

• How can we address the issue with the
array being small?

• Initial huge allocation: wastes space

• Dynamically reallocate and redistribute
when we get too large: complex and
resizing is expensive (common in
practice)

Tuesday, August 19, 14

Hash Function

• How can we address the issue with the
hash function putting everything into the
same bucket?

Tuesday, August 19, 14

Hash Function

• How can we address the issue with the
hash function putting everything into the
same bucket?

• Build a better hash function

str[0]*31^(len-1) + str[1]*31^(len-2)
+ ... + str[len-1]

Tuesday, August 19, 14

Time Complexity

• What are the time complexities after
adjusting for the small array issue and
improving the hash function?

Tuesday, August 19, 14

Time Complexity

• What are the time complexities after
adjusting for the small array issue and
improving the hash function?

• Still O(N)! We didn’t change anything in
the worst case!

Tuesday, August 19, 14

Best-Case Time
Complexity

• What is a best-case scenario? What sort of
time complexity do we have in this best-
case scenario?

Tuesday, August 19, 14

Best-Case Time
Complexity

• What is a best-case scenario? What sort of
time complexity do we have in this best-
case scenario?

• Each bucket contains at most one entry

• Constant time - O(1)

Tuesday, August 19, 14

In Practice

• With a relatively good hash function, in
practice, hash tables perform in constant
time, despite the O(N) worst-case
complexity

• Worst-case complexity only gives you
part of the picture

• A little experiment with ~300,000 entries
showed that most 95% of buckets had
between 0-2 entries, and had at most 7

Tuesday, August 19, 14

