
CS24: Problem Solving with Computers II
Summer 2014 (Session C)

Instructor: Kyle Dewey (kyledewey@cs.ucsb.edu)
Teaching Assistants:

• David Adams (adams@mat.ucsb.edu)
• Soundharya Balasubramanian (soundharya@umail.ucsb.edu)

Website: http://cs.ucsb.edu/~kyledewey/cs24
Lecture: Tuesday / Thursday 9:30 AM - 10:45 AM in Phelps 3526
Lab: Wednesday 9:30 AM - 10:45 AM; 11:00 AM - 12:15 PM in Phelps 3525

Textbooks:
• Engineering Problem Solving with C, 4th Edition (by Delores M. Etter)
• C++ Plus Data Structures, 5th Edition (by Nell Dale)

Course Office Hours (all in Phelps 3518):
9 AM Monday and 11 AM Tuesday. Also available by appointment.

Course Description:
(In my own words) Building off of CS16, this course introduces fundamental data
structures, along with operations on these structures. This course also introduces
objects as a means to organize code.

(From the course catalog) Intermediate building blocks for solving problems using
computers. Topics include data structures, object-oriented design and development,
algorithms for manipulating these data structures and their runtime analyses. Data
structures introduced include stacks, queues, lists, trees, and sets.

Prerequisites:
• CS16, with a grade of ‘C’ or better
• Math 3B, with a grade of ‘C’ or better (may be taken concurrently) OR AP 68

(Calculus BC) with a score of 3 or higher

Grading:
• 5% - Lab Attendance, 10 sessions @ 0.5% per session
• 17.5% - Exam #1, closed book, one hand-written page (double sided)
• 17.5% - Exam #2, closed book, one hand-written page (double sided)
• 30% - Final Exam - closed book, two hand-written pages (each double sided)
• 30% - Lab Assignments, 9 assignments @ 3.3% apiece

If your exam average is below 60% and is well below the class average, you will receive
an ‘F’ in the class. This is to protect against students who lean on their partners too
much, and whose tests demonstrate that they have not learned the material.

mailto:kyledewey@cs.ucsb.edu
mailto:kyledewey@cs.ucsb.edu
mailto:adams@mat.ucsb.edu
mailto:adams@mat.ucsb.edu
mailto:soundharya@umail.ucsb.edu
mailto:soundharya@umail.ucsb.edu
http://cs.ucsb.edu/~kyledewey/cs24
http://cs.ucsb.edu/~kyledewey/cs24

Course Outline: (subject to change)
Week Day Topic Reading / Handouts

1 6/24 Review: Arrays, multiple files, fgets,
command-line arguments

Etter Chap 5

1 6/26 Review: Pointers and allocation Etter Chap 6

2 7/1 structs, allocation, multiple files Etter Chap 7

2 7/3 C++, objects, ADTs Etter Chap 8
Dale Chap 2.1 - 2.4

3 7/8 Objects, constructors Etter Chap 8
Dale Chap 2

3 7/10 Linked lists Dale Chap 3.1 - 3.2

4 7/15 Linked lists Dale Chap 3

4 7/17 Stacks, complexity Dale Chap 2.6

5 7/22 Queues, review Dale Chap 5.3 - 5.4

5 7/24 Exam 1 Etter Chap 7 - 8
Dale Chap 2 - 4

6 7/29 Complexity Analysis Dale Chap 2.6

6 7/31 Recursion Dale Chap 7.1 - 7.4

7 8/5 Recursion Dale Chap 7.5 - 7.7, 7.10

7 8/7 Binary trees Dale Chap 8.4 - 8.5

8 8/12 Binary trees Dale Chap 8.6 - 8.8

8 8/14 Binary tree removes, heaps, priority
queues

Dale Chap 8.6 - 8.7
Dale Chap 9.1 - 9.2

9 8/19 Exam 2

9 8/21 Array-based implementations, hash
tables

Dale Chap 8.8, 5.3, 10.3

10 8/26 Hash tables Dale Chap 10.3

10 8/28 Exam 3 Dale Chap 1 - 9

On Pair Programming:
The labs will encourage students to do pair programming. In pair programming, one
person is the “driver” who actually writes code, and another person “navigates” the
driver through communication. People can switch between the two roles dynamically if
they so choose. In my own experience, pair programming is excellent for tackling
difficult problems that are simply too complex to keep contained in only one head. One
person can focus on the details (usually the driver) while another can focus on the big
picture (usually the navigator), and the end result is faster, less stressful development.

This, of course, is the ideal. This tends not to work well when two people of very
different skill levels attempt it, and one of them is more anxious to “just get it done”. In
light of this, when selecting a partner for pair programming, it is best to select someone
of approximately the same skill level.

On Collaboration:
In actual software development, very little work is done as an individual effort. Most
modern software systems are simply too big to be undertaken in this style, so
collaboration is key. This is one of the reasons why we are encouraging pair
programming for some of the labs - this is a real, marketable skill.

That said, collaboration is not simply taking the credit for someone else’s work. When
this happens, everyone loses. The obvious loser is whoever did all the work. The less
immediate loser is the one who took half of the credit for the work, because that person
did not learn whatever the assignment was trying to teach. This can (and I have seen it
happen during my own undergrad!) snowball long-term. Eventually the student who
took the credit without working is truly completely lost, often without realizing it, and is
held up entirely by the work of other students. This is a worst-case scenario, but in my
experience it is far too common.

The point is this: collaboration means to work together, not to blindly take someone
else’s work or to give your own work away.

Attendance policy:
Attendance will not be taken in lecture, and there will be no graded assignments given
during lecture. However, any material covered in lecture is ultimately your
responsibility, regardless of whether or not the lecture was attended. Attendance will be
taken for lab, and each lab counts towards 0.5% of your grade.

Due Dates / Late Policy:
For items turned in late, each person has 24 hours worth of “grace” time in total. For
example, if someone were to submit the first lab 4 hours late and the second lab 6
hours late, then a total of 10 “grace” hours have been used. Both submissions would be
accepted without incident, and there would be 14 “grace” hours remaining. For a pair
submission, the grace time counts against both students individually. For example, if a
pair submission were turned in 5 hours late, and one student had 20 hours of grace time

remaining and the other 5 hours, then both students receive credit. The first student
ends up with 15 grace hours remaining and the second is left without any grace time
remaining. Except in extenuating circumstances, submissions for students who have
gone beyond their grace time will not be accepted.
! A little background on this policy - the grace time is intended to be used as a sort
of last-minute “oops” relating to a poor time estimate of (what should be) final touches.
This policy tries to reduce the number of submissions hastily done just to meet a
deadline, and to prevent issues of submissions that missed the deadline by a relatively
small amount of time. It is not intended to be used as a way to extend the deadline for
one assignment for a day, although it certainly can be used that way. Be forewarned:
once it’s gone it’s gone, so use it wisely!

Extenuating Circumstances:
“Extenuating circumstances”, for the purpose of this class, is defined as anything
beyond our immediate control. In these cases, at my discretion I can grant an
extension. To be absolutely clear, there is no guarantee that I will do so, and I am not
obligated to grant them. For the things we can predict (e.g., trips), I expect to be
contacted at least a week in advance. For the things we cannot predict (e.g., illness), I
need official documentation explaining the situation (e.g., a doctor’s note).

Communication Policy:
I have two office hours per week, though I may increase this to 3-4 if questions abound.
I’m also available by appointment.
! With email, assume that I will take at least 24 hours to respond. Typically my
response time is much, much faster than this, but I do occasionally take this long.
Historically, this has only been an issue the last hours before a project deadline, and
only for students who started far too late. The point being: start early!

Academic Honesty:
In as few words as possible, cheating and plagiarism will not be tolerated. I understand
that the temptation may be high (“it’s just this one assignment” or “I just need this
class”), but this is no excuse. At the very least, this is unfair to all the students who did
not resort to such unethical means, who instead took the time and struggled through. I
will be following UCSB’s Academic Conduct policy on this (from http://www.sa.ucsb.edu/
Regulations/student_conduct.aspx, under “General Standards of Conduct”), quoted
below for convenience:

It is expected that students attending the University of California understand and
subscribe to the ideal of academic integrity, and are willing to bear individual
responsibility for their work. Any work (written or otherwise) submitted to fulfill an
academic requirement must represent a student’s original work. Any act of academic
dishonesty, such as cheating or plagiarism, will subject a person to University
disciplinary action. Cheating includes, but is not limited to, looking at another student’s
examination, referring to unauthorized notes during an exam, providing answers, having
another person take an exam for you, etc. Representing the words, ideas, or concepts of
another person without appropriate attribution is plagiarism. Whenever another person’s
written work is utilized, whether it be a single phrase or longer, quotation marks must be

http://www.sa.ucsb.edu/Regulations/student_conduct.aspx
http://www.sa.ucsb.edu/Regulations/student_conduct.aspx
http://www.sa.ucsb.edu/Regulations/student_conduct.aspx
http://www.sa.ucsb.edu/Regulations/student_conduct.aspx

used and sources cited. Paraphrasing another’s work, i.e., borrowing the ideas or
concepts and putting them into one’s “own” words, must also be acknowledged.
Although a person’s state of mind and intention will be considered in determining the
University response to an act of academic dishonesty, this in no way lessens the
responsibility of the student.

Note that collaboration with a non-lab partner also constitutes cheating. Any incident of
cheating will be reported. While this may sound steep, real-life cases of cheating (i.e.
taking someone else’s code without permission) have led to job termination and
lawsuits among other things, so this is not unrealistic.

