CS 64 Week 0 Lecture I Kyle Dewey

Overview

- Administrative stuff
- Class motivation
- Syllabus
- Working with different bases
- Bitwise operations
- Twos complement

Administrative Stuff

About Me

- 5th year Ph.D. candidate, doing programming languages research (automated testing)
- Not a professor; just call me Kyle
- Fourth time teaching; first time teaching CS64

About this Class

- See something wrong? Want something improved? Email me about it!
(kyledewey@cs.ucsb.edu)
- I generally operate based on feedback

Bad Feedback

- This guy sucks.
- This class is boring.
- This material is useless.

Good Feedback

- This guy sucks, I can't read his writing.
- This class is boring, it's way too slow.
- This material is useless, I don't see how it relates to anything in reality.
- I can't fix anything if I don't know what's wrong

Questions

- Which best describes you?
- CS major
- ECE major
- Other

Office Hours Placement

Class Motivation

int main(int argc, char** argv) \{ \}

int main(int argc, char** argv) \{

 \}

int main(int argc, char** argv) \{

 \}

int main(int argc, char** argv) \{

 \}
-Image source: http://dnr.wi.gov/eek/critter/reptile/images/turtleMidlandPainted.jpg -But what if your magic isn't working fast enough?
int main(int argc, char** argv) \{ \}

More Efficient Algorithms

-Image source: http://dnr.wi.gov/eek/critter/reptile/images/turtleMidlandPainted.jpg -Let's apply some better algorithms, improve time complexity, and so on...
int main(int argc, char** argv) \{ \}

More Efficient Algorithms

Why are things still slow?

The magic box isn't so magic

Array Access

$$
\operatorname{arr}[x]
$$

- Constant time! (O(I))
- Where the random in random access memory comes from!

Array Access

$$
\operatorname{arr}[x]
$$

- Constant ti
 - Where the memory co

Jom access

Array Access

- Memory is loaded as chunks into caches
- Cache access is much faster (e.g., IOx)
- Iterating through an array is fast
- Jumping around any which way is slow
- Can change time complexity if accounted for
- $\mathrm{O}\left(\mathrm{N}^{\wedge} 3\right)$ versus $\sim \mathrm{O}\left(\mathrm{N}^{\wedge} 4\right)$
-Matrix multiply is the example at the end. If you take the graduate-level parallel programming course, you'll watch a matrix multiply program seemingly nonsensically get around 5-6X faster by using a memory layout which looks asinine, but processors love

Instruction Ordering

$$
\begin{aligned}
& \text { int } x=a+b ; \\
& \text { int } y=c * d ; \\
& \text { int } z=e-f ;
\end{aligned}
$$

int $z=e-f ;$
int $y=c * d$;
int $x=a+b ;$
-Two code snippets that appear to do the exact same thing
-Both should take the same amount of time, right?

Instruction Ordering

$$
\begin{aligned}
& \text { int } x=a+b ; \\
& \text { int } y=c * d ; \\
& \text { int } z=e-f ;
\end{aligned}
$$

3 Milliseconds?

$$
\begin{aligned}
& \text { int } z=e-f ; \\
& \text { int } y=c * d ; \\
& \text { int } x=a+b ;
\end{aligned}
$$

3 Milliseconds?
-Two code snippets that appear to do the exact same thing
-Both should take the same amount of time, right?

Instruction Ordering

Instruction Ordering

- Modern processors are pipelined, and can execute sub-portions of instructions in parallel
- Depends on when instructions are encountered
- Some can execute whole instructions in different orders
- If your processor is from Intel, it is insane.

The Point

- If you really want performance, you need to know how the magic works
- "But it scales!" - empirically, probably not
- Chrome is fast for a reason
- If you want to write a naive compiler (CSI60), you need to know some low-level details
- If you want to write a fast compiler, you need to know tons of low-level details that it was too slow to handle the sort of scale that it handles now.

So Why Digital Design?

So Why Digital Design?

-Image source: https://en.wikipedia.org/wiki/MIPS_instruction_set\#/media/ File:MIPS_Architecture_\%28Pipelined\%29.svg
-...into this

So Why Digital Design?

- Basically, circuits are the programming language of hardware
- Yes, everything goes back to physics

Syllabus

Working with Different

Bases

What's In a Number?

- Question: why exactly does 123 have the value 123? As in, what does it mean?

What's In a Number?

123

What's In a Number?

-Break it down into its separate digits

What's In a Number?

1	2	3
Hundreds	Tens	Ones

-Values of each digit

What's In a Number?

-Values of each digit

Question

- Why did we go to tens? Hundreds?

Answer

- Because we are in decimal (base I0)

Another View

123

Another View

-Break it down into its separate digits

Another View

-Values of each digit

Conversion from Some Base to Decimal

- Involves repeated division by the value of the base
- From right to left: list the remainders
- Continue until 0 is reached
- Final value is result of reading remainders from bottom to top
- For example: what is 231 decimal to decimal?

Conversion from Some Base to Decimal

231

Conversion from Some Base to Decimal

Remainder
 $10 \underline{231}$
 I

Conversion from Some Base to Decimal

- Remainder
 $10 \lcm{231}$
 $10 \lcm{23}$
 2
 3

Conversion from Some Base to Decimal

Now for Binary

- Binary is base 2
- Useful because circuits are either on or off, representable as two states, 0 and I

Now for Binary

1010

Now for Binary

1	0	1	0

Now for Binary

1	0	1	0
Eights	Fours	Twos	Ones

Now for Binary

1	0	1	0
Eights	Fours	Twos	Ones
1×2^{3}	0×2^{2}	1×2^{1}	0×2^{0}
8	0	2	0

Question

- What is binary 0101 as a decimal number?

Answer

- What is binary 0101 as a decimal number?
- 5

From Decimal to Binary

- What is decimal 57 to binary?

From Decimal to Binary

57

From Decimal to Binary

Octal

- Octal is base 8
- Same idea

Octal Example

- What is 172 octal in decimal?

Octal Example

172

Octal Example

|
-Break it down into its separate digits

Octal Example

1	7	2
$\substack{\text { Sixty-fours } \\ 1 \times 8^{2}}$	Eights 7×8^{1}	Ones 2×8^{0}

-Break it down into its separate digits

Octal Example

-Break it down into its separate digits

Octal Example

Answer: 122

-Break it down into its separate digits

From Decimal to Octal

- What is 182 decimal to octal?

From Decimal to Octal

182

From Decimal to Octal

\section*{| | |
| :--- | :--- |
| $8 \frac{182}{22}$ | |
| | |
| | |}

From Decimal to Octal

From Decimal to Octal

Hexadecimal

- Base 16
- Binary is horribly inconvenient to write out
- Easier to convert between hexadecimal (which is more convenient) and binary
- Each hexadecimal digit maps to four binary digits
- Can just memorize a table

Hexadecimal

- Digits 0-9, along with A (IO), B (II), C (I2), D (I3), E (I4), F (I5)

Hexadecimal Example

- What is IAF hexadecimal in decimal?

Hexadecimal Example

A F

Hexadecimal Example

Two-fifty-sixes
Sixteens
Ones

Hexadecimal Example

Hexadecimal Example

Hexadecimal to Binary

- Previous techniques all work, using decimal as an intermediate
- The faster way: memorize a table (which can be easily reconstructed)

Hexadecimal to Binary

Hexadecimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Hexadecimal	Binary
8	1000
9	1001
$\mathrm{~A}(10)$	1010
$\mathrm{~B}(11)$	1011
$\mathrm{C}(12)$	1100
$\mathrm{D}(13)$	1101
$\mathrm{E}(14)$	1110
$\mathrm{~F}(15)$	1111

-0101 1010: 0x5A

Bitwise Operations

Bitwise AND

- Similar to logical AND ($\& \&)$, except it works on a bit-by-bit manner
- Denoted by a single ampersand: \&

$$
\begin{aligned}
& (1001 \& \\
& 0101)= \\
& 0001
\end{aligned}
$$

Bitwise OR

- Similar to logical OR (||), except it works on a bit-by-bit manner
- Denoted by a single pipe character: |

$$
\begin{aligned}
& (1001 \\
& 0101)= \\
& 1101
\end{aligned}
$$

Bitwise XOR

- Exclusive OR, denoted by a carat: ${ }^{\wedge}$
- Similar to bitwise OR, except that if both inputs are 1 then the result is 0

$$
\begin{aligned}
& (1001 \\
& 0101)= \\
& 1100
\end{aligned}
$$

Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- Denoted by a tilde character: ~

$$
\begin{array}{r}
\sim 1001= \\
0110
\end{array}
$$

Shift Left

- Move all the bits N positions to the left, subbing in N 0 s on the right

Shift Left

- Move all the bits N positions to the left, subbing in N 0 s on the right

1001

Shift Left

- Move all the bits N positions to the left, subbing in N 0 s on the right
$1001 \ll 2=$
100100

Shift Left

- Useful as a restricted form of multiplication
- Question: how?

$$
\begin{aligned}
& 1001 \ll 2= \\
& 100100
\end{aligned}
$$

Shift Left as Multiplication

- Equivalent decimal operation:

234

Shift Left as Multiplication

- Equivalent decimal operation:

$$
\begin{aligned}
& 234 \ll 1= \\
& 2340
\end{aligned}
$$

Shift Left as Multiplication

- Equivalent decimal operation:

$$
\begin{aligned}
& 234 \ll 1= \\
& 2340 \\
& 234 \ll 2= \\
& 23400
\end{aligned}
$$

Multiplication

- Shifting left N positions multiplies by (base) ${ }^{\mathrm{N}}$
- Multiplying by 2 or 4 is often necessary (shift left I or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply
- Compilers try hard to do this

$$
\begin{aligned}
& 234 \ll 2= \\
& 23400
\end{aligned}
$$

Shift Right

- Move all the bits N positions to the right, subbing in either N 0 s or N 1s on the left
- Two different forms

Shift Right

- Move all the bits N positions to the right, subbing in either N Os or N (whatever the leftmost bit is)s on the left
- Two different forms

$$
\begin{aligned}
& 1001 \gg 2= \\
& \text { either } 0010 \text { or } 1110
\end{aligned}
$$

Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?

Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?
- Answer: divides in a similar way, but truncates result

Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?
- Answer: divides in a similar way, but truncates result

$$
234
$$

Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?
- Answer: divides in a similar way, but truncates result

$$
\begin{aligned}
& 234 \gg 1= \\
& 23
\end{aligned}
$$

Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
- And why is this called "arithmetic" shift right?

1100 (arithmetic) >> $1=$
1110

Answer...Sort of

- Arithmetic form is intended for numbers in twos complement, whereas the nonarithmetic form is intended for unsigned numbers

Twos Complement

Problem

- Binary representation so far makes it easy to represent positive numbers and zero
- Question:What about representing negative numbers?

Twos Complement

- Way to represent positive integers, negative integers, and zero
- If 1 is in the most significant bit (generally leftmost bit in this class), then it is negative

Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)

Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

$$
5(\text { decimal })=0101 \text { (binary) }
$$

Decimal to Twos Complement

- Then, take the bits, and negate them

Decimal to Twos Complement

- Then, take the bits, and negate them

0101

Decimal to Twos Complement

- Then, take the bits, and negate them

$$
\begin{gathered}
\sim 0101= \\
1010
\end{gathered}
$$

Decimal to Twos Complement

- Finally, add one:

Decimal to Twos Complement

- Finally, add one:

1010

Decimal to Twos Complement

- Finally, add one:

$$
\begin{aligned}
& 1010+1= \\
& 1011
\end{aligned}
$$

Twos Complement to Decimal

- Same operation: negate the bits, and add one

Twos Complement to Decimal

- Same operation: negate the bits, and add one

1011

Twos Complement to Decimal

- Same operation: negate the bits, and add one

$$
\begin{gathered}
\sim 1011= \\
0100
\end{gathered}
$$

Twos Complement to Decimal

- Same operation: negate the bits, and add one

0100

Twos Complement to Decimal

- Same operation: negate the bits, and add one

$$
\begin{aligned}
& 0100+1= \\
& 0101
\end{aligned}
$$

Where Is Twos

Complement From?

- Intuition: try to subtract I from 0 , in decimal
- Involves borrowing from an invisible number on the left
- Twos complement is based on the same idea

