
CS 64 Week 0 Lecture 1
Kyle Dewey

Overview

• Administrative stuff

• Class motivation

• Syllabus

• Working with different bases

• Bitwise operations

• Twos complement

Administrative Stuff

About Me

• 5th year Ph.D. candidate, doing programming
languages research (automated testing)

• Not a professor; just call me Kyle

• Fourth time teaching; first time teaching CS64

About this Class

• See something wrong? Want something
improved? Email me about it!
(kyledewey@cs.ucsb.edu)

• I generally operate based on feedback

mailto:kyledewey@cs.ucsb.edu
mailto:kyledewey@cs.ucsb.edu

Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

-I can’t do anything in response to this

Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it
relates to anything in reality.

• I can’t fix anything if I don’t know what’s
wrong

-I can actually do something about this!

Questions

• Which best describes you?

• CS major

• ECE major

• Other

Office Hours
Placement

Class Motivation

int main(int argc, char** argv) {
 ...
}

-I just want to write my code

int main(int argc, char** argv) {
 ...
}

-Image source: http://media.firebox.com/pic/p5294_column_grid_12.jpg
-Have some magic happen

int main(int argc, char** argv) {
 ...
}

3.14956

-Image source: http://media.firebox.com/pic/p5294_column_grid_12.jpg
-And then get a result

int main(int argc, char** argv) {
 ...
}

3.14956

-Image source: http://dnr.wi.gov/eek/critter/reptile/images/turtleMidlandPainted.jpg
-But what if your magic isn’t working fast enough?

int main(int argc, char** argv) {
 ...
}

3.14956

More Efficient
Algorithms

-Image source: http://dnr.wi.gov/eek/critter/reptile/images/turtleMidlandPainted.jpg
-Let’s apply some better algorithms, improve time complexity, and so on...

int main(int argc, char** argv) {
 ...
}

3.14956

More Efficient
Algorithms

-Image source: http://turtlefeed.tumblr.com/post/35444735335/ive-lost-track-of-how-
many-turtle-on-skateboard
-...and we’re left with a slightly faster turtle

Why are things still
slow?

The magic box isn’t so
magic

Array Access

• Constant time! (O(1))

• Where the random in random access
memory comes from!

arr[x]

Array Access

• Constant time! (O(1))

• Where the random in random access
memory comes from!

arr[x]

-Image source: http://blog.fractureme.com/wp-content/uploads/2014/12/dwight-schrute-
false-288x300.jpg

Array Access

• Memory is loaded as chunks into caches

• Cache access is much faster (e.g., 10x)

• Iterating through an array is fast

• Jumping around any which way is slow

• Can change time complexity if accounted for

• O(N^3) versus ~O(N^4)

-Matrix multiply is the example at the end. If you take the graduate-level parallel
programming course, you’ll watch a matrix multiply program seemingly nonsensically get
around 5-6X faster by using a memory layout which looks asinine, but processors love

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

-Two code snippets that appear to do the exact same thing
-Both should take the same amount of time, right?

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

3 Milliseconds? 3 Milliseconds?

-Two code snippets that appear to do the exact same thing
-Both should take the same amount of time, right?

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

3 Milliseconds? 3 Milliseconds?

-Image source: http://www.dreamstime.com/stock-photo-nope-word-typed-scrap-torn-
paper-pinned-to-cork-notice-board-word-well-known-meme-modern-slang-
image43914016

Instruction Ordering
• Modern processors are pipelined, and can

execute sub-portions of instructions in
parallel

• Depends on when instructions are
encountered

• Some can execute whole instructions in
different orders

• If your processor is from Intel, it is insane.

The Point
• If you really want performance, you need to

know how the magic works

• “But it scales!” - empirically, probably not

• Chrome is fast for a reason

• If you want to write a naive compiler (CS160),
you need to know some low-level details

• If you want to write a fast compiler, you need
to know tons of low-level details

-A bunch of Chrome is written using low-level machine instructions (assembly)
-Ruby on Rails is horrendously slow, and is built on the idea of scaling up. A startup I know
of beat a 50 node Rails cluster using one machine. Even in more typical settings, typically it’s
something like 10 Rails nodes to one optimized node. Twitter used to run Rails, but found
that it was too slow to handle the sort of scale that it handles now.

So Why Digital Design?

-Image source: http://media.firebox.com/pic/p5294_column_grid_12.jpg
-It’s to turn this

So Why Digital Design?

-Image source: https://en.wikipedia.org/wiki/MIPS_instruction_set#/media/
File:MIPS_Architecture_%28Pipelined%29.svg
-...into this

So Why Digital Design?

• Basically, circuits are the programming
language of hardware

• Yes, everything goes back to physics

Syllabus

Working with Different
Bases

What’s In a Number?

• Question: why exactly does 123 have the
value 123? As in, what does it mean?

-Not a philosophy question
-This is actually kind of brain-melting, but once this is understood everything else becomes
second-nature

What’s In a Number?

123

-Start with 123

What’s In a Number?

321

-Break it down into its separate digits

What’s In a Number?

321

OnesTensHundreds

-Values of each digit

What’s In a Number?

321

OnesTensHundreds

100 10 10 1 1 1

-Values of each digit

Question
• Why did we go to tens? Hundreds?

321

OnesTensHundreds

100 10 10 1 1 1

Answer
• Because we are in decimal (base 10)

321

OnesTensHundreds

100 10 10 1 1 1

Another View

123

Another View

321

-Break it down into its separate digits

Another View

321

3 x 1002 x 1011 x 102

-Values of each digit

Conversion from Some
Base to Decimal

• Involves repeated division by the value of
the base

• From right to left: list the remainders

• Continue until 0 is reached

• Final value is result of reading
remainders from bottom to top

• For example: what is 231 decimal to
decimal?

Conversion from Some
Base to Decimal

231

Conversion from Some
Base to Decimal

231
23

Remainder

1
10

Conversion from Some
Base to Decimal

231
23

Remainder

1
10
10

2 3

Conversion from Some
Base to Decimal

231
23

Remainder

1
10
10

2 310
0 2

-Final value: 231 (reading remainders from bottom to top)

Now for Binary

• Binary is base 2

• Useful because circuits are either on or off,
representable as two states, 0 and 1

Now for Binary

1010

Now for Binary

1 0 1 0

Now for Binary

1 0 1 0

OnesTwosFoursEights

Now for Binary

1 0 1 0

OnesTwosFoursEights

0 x 201 x 210 x 221 x 23

8 20 0

Question

• What is binary 0101 as a decimal number?

Answer
• What is binary 0101 as a decimal number?

• 5

0 1 0 1

OnesTwosFoursEights

1 x 200 x 211 x 220 x 23

0 04 1

From Decimal to Binary

• What is decimal 57 to binary?

From Decimal to Binary

57

From Decimal to Binary

57
28

Remainder

1
2

From Decimal to Binary

57
28

Remainder

1
2
2

14 0

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

1

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

12
1 1

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

12
1 12
0 1

Octal

• Octal is base 8

• Same idea

Octal Example

• What is 172 octal in decimal?

Octal Example

172

Octal Example

271

-Break it down into its separate digits

Octal Example

271

1 x 82 7 x 81 2 x 80

OnesEightsSixty-fours

-Break it down into its separate digits

Octal Example

271

1 x 82 7 x 81 2 x 80

OnesEightsSixty-fours

64
8 8 8 8 8 8 8

1 1(56)
-Break it down into its separate digits

Octal Example

271

1 x 82 7 x 81 2 x 80

OnesEightsSixty-fours

64
8 8 8 8 8 8 8

1 1(56)

Answer: 122

-Break it down into its separate digits

From Decimal to Octal

• What is 182 decimal to octal?

From Decimal to Octal

182

From Decimal to Octal

182

Remainder

8
22 6

From Decimal to Octal

182

Remainder

8
22 6
2

8
6

From Decimal to Octal

182

Remainder

8
22 6
2

8
68

0 2

Hexadecimal

• Base 16

• Binary is horribly inconvenient to write out

• Easier to convert between hexadecimal
(which is more convenient) and binary

• Each hexadecimal digit maps to four
binary digits

• Can just memorize a table

Hexadecimal

• Digits 0-9, along with A (10), B (11), C (12),
D (13), E (14), F (15)

Hexadecimal Example

• What is 1AF hexadecimal in decimal?

Hexadecimal Example

FA1

Hexadecimal Example

FA1

OnesSixteensTwo-fifty-sixes

Hexadecimal Example

FA1

1 x 162 10 x 161 15 x 160

OnesSixteensTwo-fifty-sixes

Hexadecimal Example

FA1

1 x 162 10 x 161 15 x 160

OnesSixteensTwo-fifty-sixes

256

16 16 16 16 16
16 16 16 16 16

(160)

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

(15)

Hexadecimal to Binary

• Previous techniques all work, using decimal
as an intermediate

• The faster way: memorize a table (which
can be easily reconstructed)

Hexadecimal to Binary

Hexadecimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Hexadecimal Binary

8 1000
9 1001

A (10) 1010
B (11) 1011
C (12) 1100
D (13) 1101
E (14) 1110
F (15) 1111

-0x1AF: 0001 1010 1111
-0101 1010: 0x5A

Bitwise Operations

Bitwise AND

• Similar to logical AND (&&), except it
works on a bit-by-bit manner

• Denoted by a single ampersand: &

(1001 &
 0101)=
 0001

Bitwise OR

• Similar to logical OR (||), except it works
on a bit-by-bit manner

• Denoted by a single pipe character: |

(1001 |
 0101)=
 1101

Bitwise XOR

• Exclusive OR, denoted by a carat: ^

• Similar to bitwise OR, except that if both
inputs are 1 then the result is 0

(1001 ^
 0101)=
 1100

Bitwise NOT

• Similar to logical NOT (!), except it works
on a bit-by-bit manner

• Denoted by a tilde character: ~

~1001 =
 0110

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

1001

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

1001 << 2 =
100100

Shift Left

• Useful as a restricted form of multiplication

• Question: how?

1001 << 2 =
100100

Shift Left as
Multiplication

• Equivalent decimal operation:

234

Shift Left as
Multiplication

• Equivalent decimal operation:

234 << 1 =
2340

Shift Left as
Multiplication

• Equivalent decimal operation:

234 << 1 =
2340

234 << 2 =
23400

Multiplication
• Shifting left N positions multiplies by
(base)N

• Multiplying by 2 or 4 is often necessary
(shift left 1 or 2 positions, respectively)

• Often a whooole lot faster than telling the
processor to multiply

• Compilers try hard to do this

234 << 2 =
23400

Shift Right

• Move all the bits N positions to the right,
subbing in either N 0s or N 1s on the left

• Two different forms

Shift Right

• Move all the bits N positions to the right,
subbing in either N 0s or N (whatever the
leftmost bit is)s on the left

• Two different forms
1001 >> 2 =
either 0010 or 1110

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

234

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

234 >> 1 =
23

Two Forms of Shift
Right

• Subbing in 0s makes sense

• What about subbing in the leftmost bit?

• And why is this called “arithmetic” shift
right?

1100 (arithmetic)>> 1 =
1110

Answer...Sort of

• Arithmetic form is intended for numbers in
twos complement, whereas the non-
arithmetic form is intended for unsigned
numbers

Twos Complement

Problem

• Binary representation so far makes it easy
to represent positive numbers and zero

• Question: What about representing
negative numbers?

Twos Complement

• Way to represent positive integers, negative
integers, and zero

• If 1 is in the most significant bit (generally
leftmost bit in this class), then it is negative

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

• First, convert the magnitude to an unsigned
representation

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

• First, convert the magnitude to an unsigned
representation

5 (decimal) = 0101 (binary)

Decimal to Twos
Complement

• Then, take the bits, and negate them

Decimal to Twos
Complement

• Then, take the bits, and negate them

0101

Decimal to Twos
Complement

• Then, take the bits, and negate them

~0101 =
 1010

Decimal to Twos
Complement

• Finally, add one:

Decimal to Twos
Complement

• Finally, add one:

1010

Decimal to Twos
Complement

• Finally, add one:
1010 + 1 =
1011

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

1011

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

~1011 =
 0100

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100 + 1 =
0101

Where Is Twos
Complement From?

• Intuition: try to subtract 1 from 0, in
decimal

• Involves borrowing from an invisible
number on the left

• Twos complement is based on the same
idea

