
CS 64 Week 1 Lecture 1
Kyle Dewey

Overview

• Bitwise operation wrap-up

• Two’s complement

• Addition

• Subtraction

• Multiplication (if time)

Bitwise Operation
Wrap-up

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

1001

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

1001 << 2 =
100100

Shift Left

• Useful as a restricted form of multiplication

• Question: how?

1001 << 2 =
100100

Shift Left as
Multiplication

• Equivalent decimal operation:

234

Shift Left as
Multiplication

• Equivalent decimal operation:

234 << 1 =
2340

Shift Left as
Multiplication

• Equivalent decimal operation:

234 << 1 =
2340

234 << 2 =
23400

Multiplication
• Shifting left N positions multiplies by
(base)N

• Multiplying by 2 or 4 is often necessary
(shift left 1 or 2 positions, respectively)

• Often a whooole lot faster than telling the
processor to multiply

• Compilers try hard to do this

234 << 2 =
23400

Shift Right

• Move all the bits N positions to the right,
subbing in either N 0s or N 1s on the left

• Two different forms

Shift Right

• Move all the bits N positions to the right,
subbing in either N 0s or N (whatever the
leftmost bit is)s on the left

• Two different forms
1001 >> 2 =
either 0010 or 1110

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

234

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

234 >> 1 =
23

Two Forms of Shift
Right

• Subbing in 0s makes sense

• What about subbing in the leftmost bit?

• And why is this called “arithmetic” shift
right?

1100 (arithmetic)>> 1 =
1110

Answer...Sort of

• Arithmetic form is intended for numbers in
twos complement, whereas the non-
arithmetic form is intended for unsigned
numbers

Twos Complement

Problem

• Binary representation so far makes it easy
to represent positive numbers and zero

• Question: What about representing
negative numbers?

Twos Complement

• Way to represent positive integers, negative
integers, and zero

• If 1 is in the most significant bit (generally
leftmost bit in this class), then it is negative

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

• First, convert the magnitude to an unsigned
representation

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

• First, convert the magnitude to an unsigned
representation

5 (decimal) = 0101 (binary)

Decimal to Twos
Complement

• Then, take the bits, and negate them

Decimal to Twos
Complement

• Then, take the bits, and negate them

0101

Decimal to Twos
Complement

• Then, take the bits, and negate them

~0101 =
 1010

Decimal to Twos
Complement

• Finally, add one:

Decimal to Twos
Complement

• Finally, add one:

1010

Decimal to Twos
Complement

• Finally, add one:
1010 + 1 =
1011

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

1011

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

~1011 =
 0100

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100 + 1 =
0101

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100 + 1 =
0101 =
-5

We started with
1011 - negative

Where Is Twos
Complement From?

• Intuition: try to subtract 1 from 0, in
decimal

• Involves borrowing from an invisible
number on the left

• Twos complement is based on the same
idea

Another View
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

Another View
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

(least +)(least -)

(most +)

(most -)

(zero)

Another View
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

1

0

2

3

-4

-3

-2

-1

Negation of 1

000

001

010

011

100

101

110

111

Negation of 1

000

001

010

011

100

101

110

111

Negation of 1

000

001

010

011

100

101

110

111

Negation of 1

000

001

010

011

100

101

110

111

Consequences

• What is the negation of 000?

000

001

010

011

100

101

110

111

Consequences

• What is the negation of 100?

000

001

010

011

100

101

110

111

Arithmetic Shift Right
• Not exactly division by a power of two

• Consider -3 / 2

000

001

010

011

100

101

110

111 1

0

2

3

-4

-3

-2

-1

Addition

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

Carry: 1

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

Carry: 1

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

1
+0
--
1

Core Concepts

• We have a “primitive” notion of adding
single digits, along with an idea of carrying
digits

• We can build on this notion to add
numbers together that are more than one
digit long

Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
?

0
+1
--
?

1
+0
--
?

1
+1
--
?

Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
0

0
+1
--
1

1
+0
--
1

1
+1
--
0

Carry: 1

Chaining the Carry
• Also need to account for any input carry

1
0

+0
--
1

1
0

+1
--
0

1
1

+0
--
0

1
1

+1
--
1

0
0

+0
--
0

0
0

+1
--
1

0
1

+0
--
1

0
1

+1
--
0

Carry: 1 Carry: 1 Carry: 1

Carry: 1

In Summary

Single Bit Adder

First Operand
Bit

Second Operand
Bit

Input Carry
Bit

Result Bit Output Carry
Bit

• How can we adapt this to add multi-digit
binary numbers together?

Single Bit Adder

First Operand
Bit

Second Operand
Bit

Input Carry
Bit

Result Bit Output Carry
Bit

Putting it Together

Single Bit Adder

First Operand
Bit

Second Operand
Bit

Input Carry
Bit

Result Bit Output Carry
Bit

Putting it Together

+

I1 I2

CI CO

R

Putting it Together

+

A0 B0

0

R0

+

R1

+ C

R2

For two three-bit numbers, A and B, resulting in
a three-bit result R

A1 B1 A2 B2

Output Carry

+

A0 B0

0

R0

+

R1

+ C

R2

What about the output carry bit?

A1 B1 A2 B2

Output Carry

+

A0 B0

0

R0

+

R1

+ C

R2

What about the output carry bit?

A1 B1 A2 B2

A: 111
B: 001

R: ?, C: ?

Output Carry

+

A0 B0

0

R0

+

R1

+ C

R2

What about the output carry bit?

A1 B1 A2 B2

A: 111
B: 001

R: 000, C: 1

Output Carry Bit
Significance

• For unsigned numbers, it indicates if the
result did not fit all the way into the
number of bits allotted

• May be an error condition for software

Signed Addition

• Question: what is the result of the
following operation?

011
+011

?

Signed Addition

• Question: what is the result of the
following operation?

011
+011

0111

Overflow

• In this situation, overflow occurred: this
means that both the operands had the
same sign, and the result’s sign differed

011
+011

110

• Possibly a software error

Overflow vs. Carry
• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values

011
+011

111

Overflow;
No Carry

111
+001

000

No Overflow;
Carry

111
+100

011

Overflow;
Carry

001
+001

010

No Overflow;
No Carry

Subtraction

Subtraction

• Have been saying to invert bits and add one
to second operand

• Could do it this way in hardware, but there
is a trick

001
-001

?

001
+111

?

(equivalent to)

Subtraction Trick
• Assume we can invert bits, but we cannot

add one in a separate step

• How might we make this work given only
our three-bit adder from before?

+

A0 B0

0

R0

+

R1

+ C

R2

A1 B1 A2 B2

Subtraction Trick

• Put in an initial carry of 1: this indicates to
add 1 anyways

+

A0 B0

1

R0

+

R1

+ C

R2

A1 B1 A2 B2

Multiplication (if time)

Multiplication

• For simplicity, we will only consider positive
values here

• A number of different algorithms exist; we
will only look at one of them

Central Idea

• Accumulate a partial product: the result of
the multiplication as we go on

• Computed via a series of additions

• When we are finished, the partial product
becomes the final product (the result)

• Build off of addition and multiplication of a
single digit (much like with addition)

Decimal Algorithm
• Let P be the partial product, M be the

multiplicand, and N be the multiplier

• Initially, P is 0

• If N is 0, then P = the result

• If not, then P += (the rightmost digit of N)
times M

• Shift N right once, and M left once

• Repeat

Example
• Performing 803 * 151

Example
• Performing 803 * 151

P M N

Example
• Performing 803 * 151

P M N

0 803 151
Initially P = 0,
N = multiplicand
M = multiplier

Example
• Performing 803 * 151

P M N

0 803 151 N is not 0

Example
• Performing 803 * 151

P M N

0 803 151

803

P += (the rightmost
digit of N) times M

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

Shift N right once, and
M left once

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15 N is not 0

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953

P += (the rightmost
digit of N) times M

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1

Shift N right once, and
M left once

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1 N is not 0

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1

121253

P += (the rightmost
digit of N) times M

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1

121253 803000 0

Shift N right once, and
M left once

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1

121253 803000 0 N is 0; done

Intuition

• Only looking at rightmost digit of N: getting
partial product of that digit with the rest

• Shifting M left: for each digit of N observed,
we look one digit deeper in M (and result
gets correspondingly larger)

• Similar to traditional pencil-and-paper
algorithm (which shifts partial products
instead)

Why this Algorithm?
• Looks complex...ish

• On binary, things get simpler. Why?

• Initially, P is 0

• If N is 0, then P = the result

• If not, then P += (the rightmost digit of N) times M

• Shift N right once, and M left once

• Repeat

Why this Algorithm?
• Looks complex...ish

• On binary, things get simpler. Why?

• Initially, P is 0

• If N is 0, then P = the result

• If not, then P += (the rightmost digit of N) times M

• Shift N right once, and M left once

• Repeat

Simplified Binary Algorithm

• Initially, P is 0

• If N is 0, then P = the result

• If not, then P += (the rightmost digit of N) times M

• Shift N right once, and M left once

• Repeat

Simplified Binary Algorithm

• Initially, P is 0

• If N is 0, then P = the result

• If the rightmost digit if N is 1:

•P += M

• Shift N right once, and M left once

• Repeat

Dealing with Negative
Numbers

• Can still be done, but we need extra logic

• Negative times negative is a positive,
positive and a negative is a positive...

• Not fundamentally harder, and showing this
extra detail just complicates things in an
uninteresting way

