CS 64 Week I Lecture I

Kyle Dewey

Overview

- Bitwise operation wrap-up
- Two's complement
- Addition
- Subtraction
- Multiplication (if time)

Bitwise Operation Wrap-up

• Move all the bits N positions to the left, subbing in N 0s on the right

• Move all the bits N positions to the left, subbing in N 0s on the right

1001

• Move all the bits N positions to the left, subbing in N 0s on the right

- Useful as a restricted form of multiplication
- Question: how?

Shift Left as Multiplication

• Equivalent decimal operation:

234

Shift Left as Multiplication

• Equivalent decimal operation:

Shift Left as Multiplication

• Equivalent decimal operation:

Multiplication

- Shifting left N positions multiplies by (base) N
- Multiplying by 2 or 4 is often necessary (shift left 1 or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply
- Compilers try hard to do this

Shift Right

- Move all the bits N positions to the right, subbing in either N 0s or N 1s on the left
 - Two different forms

Shift Right

- Move all the bits N positions to the right, subbing in either N Os or N (whatever the leftmost bit is)s on the left
 - Two different forms

1001 >> 2 = either 0010 or 1110

• Question: If shifting left multiplies, what does shift right do?

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

234

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
 - And why is this called "arithmetic" shift right?

1100 (arithmetic)>> 1 = 1110

Answer...Sort of

 Arithmetic form is intended for numbers in twos complement, whereas the nonarithmetic form is intended for unsigned numbers

Twos Complement

Problem

- Binary representation so far makes it easy to represent positive numbers and zero
- Question: What about representing negative numbers?

Twos Complement

- Way to represent positive integers, negative integers, and zero
- If 1 is in the *most significant bit* (generally leftmost bit in this class), then it is negative

Example: -5 decimal to binary (twos complement)

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

5 (decimal) = 0101 (binary)

• Then, take the bits, and negate them

• Then, take the bits, and negate them

0101

• Then, take the bits, and negate them

 $\sim 0101 = 1010$

• Finally, add one:

• Finally, add one:

1010

Finally, add one:
1010 + 1 =
1011

Same operation: negate the bits, and add one

Same operation: negate the bits, and add one

1011

Same operation: negate the bits, and add one

 $\sim 1011 = 0100$

Same operation: negate the bits, and add one

0100

Same operation: negate the bits, and add one

0100 + 1 = 0101
Twos Complement to Decimal

Same operation: negate the bits, and add one
0100 + 1 =

-5

0101 =

Where Is Twos Complement From?

- Intuition: try to subtract I from 0, in decimal
 - Involves borrowing from an invisible number on the left
 - Twos complement is based on the same idea

Another View

Modular arithmetic, with the convention that a leading 1 bit means negative

Another View

Modular arithmetic, with the convention that a leading 1 bit means negative

Another View

Modular arithmetic, with the convention that a leading 1 bit means negative

Consequences

• What is the negation of 000?

Consequences

• What is the negation of 100?

Arithmetic Shift Right

- Not exactly division by a power of two
- Consider -3 / 2

Addition

• Question: how might we add the following, in decimal?

986 +123 ----?

• Question: how might we add the following, in decimal?

986 +123 ----

	6
	+3
	— —
	?

• Question: how might we add the following, in decimal?

986 +123 ----?

• Question: how might we add the following, in decimal?

986 +123 ----

Carry: 1	8	6
	+2	+3
	0	9

• Question: how might we add the following, in decimal?

986 +123 ----

• Question: how might we add the following, in decimal?

986 +123 ----

?

• Question: how might we add the following, in decimal?

986 +123 ----?

Core Concepts

- We have a "primitive" notion of adding single digits, along with an idea of *carrying* digits
- We can build on this notion to add numbers together that are more than one digit long

Now in Binary

• Arguably simpler - fewer one-bit possibilities

Now in Binary

• Arguably simpler - fewer one-bit possibilities

Chaining the Carry

• Also need to account for any input carry

0	0		0		0	
0	0		1		1	
+0	+1		+0		+1	
	— —					
0	1		1		0	Carry: 1
1	1		1		1	
0	0		1		1	
+0	+1		+0		+1	
— —						
1	0	Carry: 1	0	Carry: 1	1	Carry: 1

 How can we adapt this to add multi-digit binary numbers together?

Putting it Together

Putting it Together

For two three-bit numbers, A and B, resulting in a three-bit result R

Output Carry

What about the output carry bit?

Output Carry Bit Significance

- For unsigned numbers, it indicates if the result did not fit all the way into the number of bits allotted
- May be an error condition for software

Signed Addition

• Question: what is the result of the following operation?

Signed Addition

• Question: what is the result of the following operation?

Overflow

• In this situation, overflow occurred: this means that both the operands had the same sign, and the result's sign differed

• Possibly a software error
Overflow vs. Carry

- These are **different ideas**
 - Carry is relevant to **unsigned** values
 - Overflow is relevant to **signed** values

No Overflow; Carry	Overflow; No Carry	Overflow; Carry	No Overflow; No Carry
000	111	011	010
+001	+011	+100	+001
111	011	111	001

Subtraction

Subtraction

- Have been saying to invert bits and add one to second operand
- Could do it this way in hardware, but there is a trick

Subtraction Trick

- Assume we can invert bits, but we cannot add one in a separate step
- How might we make this work given only our three-bit adder from before?

Subtraction Trick

 Put in an initial carry of 1: this indicates to add 1 anyways

Multiplication (if time)

Multiplication

- For simplicity, we will only consider positive values here
- A number of different algorithms exist; we will only look at one of them

Central Idea

- Accumulate a *partial product*: the result of the multiplication as we go on
 - Computed via a series of additions
- When we are finished, the partial product becomes the final product (the result)
- Build off of addition and multiplication of a single digit (much like with addition)

Decimal Algorithm

- Let P be the partial product, M be the multiplicand, and N be the multiplier
- Initially, P is 0
- If N is 0, then P = the result
- If not, then P += (the rightmost digit of N) times M
- Shift ${\mathbb N}$ right once, and ${\mathbb M}$ left once
- Repeat

• Performing 803 * 151

• Performing 803 * 151

Р	М	N

• Performing 803 * 151

Р	М	N
0	803	151

Initially P = 0, N = multiplicand M = multiplier

• Performing 803 * 151

Р	М	N
0	803	151

N is not 0

• Performing 803 * 151

Р	М	N
0	803	15 <mark>1</mark>
803		

P += (the rightmost
digit of N) times M

• Performing 803 * 151

Р	M	N
0	803	151
803	803 <mark>0</mark>	15

Shift N right once, and M left once

• Performing 803 * 151

Р	М	N
0	803	151
803	8030	15

N is not 0

• Performing 803 * 151

Р	Μ	N
0	803	151
803	8030	15
40953		

P += (the rightmost
digit of N) times M

• Performing 803 * 151

Р	Μ	N
0	803	151
803	8030	15
40953	8030 <mark>0</mark>	1

Shift N right once, and M left once

• Performing 803 * 151

Р	М	N
0	803	151
803	8030	15
40953	80300	1

N is not 0

• Performing 803 * 151

	N	М	Р
	151	803	0
	15	8030	803
P += (the rightmos digit of N) times M	1	80300	40953
			121253

• Performing 803 * 151

Р	Μ	Ν	
0	803	151	
803	8030	15	
40953	80300	1	Shift M lef
121253	803000	0	

Shift N right once, and M left once

• Performing 803 * 151

Р	Μ	N
0	803	151
803	8030	15
40953	80300	1
121253	803000	0

N is 0; done

Intuition

- Only looking at rightmost digit of N: getting partial product of that digit with the rest
- Shifting M left: for each digit of N observed, we look one digit deeper in M (and result gets correspondingly larger)
- Similar to traditional pencil-and-paper algorithm (which shifts partial products instead)

Why this Algorithm?

- Looks complex...ish
- On binary, things get simpler. Why?

- Initially, P is 0
- If N is 0, then P = the result
- If not, then P += (the rightmost digit of N) times M
- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Why this Algorithm?

- Looks complex...ish
- On binary, things get simpler. Why?

- Initially, P is 0
- If N is 0, then P = the result
- If not, then P += (the rightmost digit of N) times M
- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Simplified Binary Algorithm

- Initially, P is 0
- If N is 0, then P = the result
- If not, then P += (the rightmost digit of N) times M
- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Simplified Binary Algorithm

- Initially, P is 0
- If N is 0, then P = the result
- If the rightmost digit if ${\rm N}$ is 1:

• P += M

- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Dealing with Negative Numbers

- Can still be done, but we need extra logic
 - Negative times negative is a positive, positive and a negative is a positive...
- Not fundamentally harder, and showing this extra detail just complicates things in an uninteresting way