
CS64 Week 2 Lecture 1
Kyle Dewey

Overview

•Mini-review: Integer representations

•syscall

• QtSpim and pseudoinstructions

• Branches

• Memory introduction

Mini-review: Integer
Representations

How do I tell the
processor to do some

operation in hex?

How do I tell the
processor to do some

operation in hex?
Answer: you’d have to code it yourself,

but it doesn’t matter anyway.

To a Processor

• To a processor, everything is in binary

• Cannot directly say to do an operation
in hex

• Could write a program to add in hex, but it
would ultimately go down to binary

• Everything is just a bunch of bits

syscall

Adding More
Functionality

• We need a way to display the result

• What does this entail?

Adding More
Functionality

• We need a way to display the result

• What does this entail?

• Input / output. This entails talking to
devices, which the operating system
handles

• We need a way to tell the operating
system to kick in

Talking to the OS

• We are going to be running on a MIPS
emulator, SPIM

• We cannot directly access system libraries
(they aren’t even in the same machine
language)

• How might we print something?

SPIM Routines

• MIPS features a syscall instruction,
which triggers a software interrupt, or
exception

• Outside of an emulator, these pause the
program and tell the OS to check
something

• Inside the emulator, it tells the emulator
to check something

syscall

• So we have the OS/emulator’s attention.
But how does it know what we want?

syscall

• So we have the OS/emulator’s attention.
But how does it know what we want?

• It has access to the registers

• Put special values in the registers to
indicate what you want

(Finally) Printing an
Integer

• For SPIM, if register $v0 contains 1, then it
will print whatever integer is stored in
register $a0

• Note that $v0 and $a0 are distinct from
$t0 - $t9

Augmenting with
Printing

li $t0, 5
li $t1, 7
add $t3, $t0, $t1

li $v0 1
move $a0, $t3
syscall

Exiting

• If you are using SPIM, then you need to say
when you are done as well

• How might this be done?

Exiting

• If you are using SPIM, then you need to say
when you are done as well

• How might this be done?

•syscall with a special value in $v0
(specifically 10 decimal)

Augmenting with Exiting

li $t0, 5
li $t1, 7
add $t3, $t0, $t1

li $v0 1
move $a0, $t3
syscall

li $v0, 10
syscall

QtSpim

Code From Last Time
.text

li $t0, 5
li $t1, 7
add $t3, $t0, $t1

li $v0 1
move $a0, $t3
syscall

li $v0, 10
syscall

Running With SPIM
(add2.asm)

move Instruction

• The move instruction does not actually
show up in SPIM

• It is a pseudoinstruction which is translated
into an actual instruction

move $a0, $t3 addu $a0, $zero, $t3

Original Actual

$zero

• Specified like a normal register, but does
not behave like a normal register

• Writes to $zero are not saved

• Reads from $zero always return 0

But why?

• Why have move as a pseudoinstruction
instead of as an actual instruction?

But why?

• Why have move as a pseudoinstruction
instead of as an actual instruction?

• One less instruction to worry about

• One design goal of RISC is to cut out
redundancy

load intermediate

• The li instruction does not actually show
up in SPIM

• It is a pseudoinstruction which is translated
into actual instructions

• Why might li work this way?

• Hint: instructions and registers are
both 32 bits long

load intermediate

• The li instruction does not actually show
up in SPIM

• It is a pseudoinstruction which is translated
into actual instructions

• Why might li work this way?

• Not enough room in one instruction to
fit everything within 32 bits

• I-type instructions only hold 16 bits

Assembly Coding
Strategy

• Best to write it in C-like language, then
translate down by hand

• This gets more complex when we get into
control structures and memory

x = 5;
y = 7;
z = x + y;

li $t0, 5
li $t1, 7
add $t3, $t0, $t1

More Examples

•swap.asm

•negate.asm

•mult80.asm

•div80.asm

Branches

Conditionals

• Using all the instructions learned so far,
how might we code up the following?

if (x == 0) {
 printf(“x is zero”);
}

Conditionals

• Using all the instructions learned so far,
how might we code up the following?

if (x == 0) {
 printf(“x is zero”);
}

Answer: We can’t (realistically).

Handling Conditionals

• What do we need to implement this?

if (x == 0) {
 printf(“x is zero”);
}

Handling Conditionals

• What do we need to implement this?

• A way to compare numbers

• A way to conditionally execute code

if (x == 0) {
 printf(“x is zero”);
}

Relevant Instructions

• Comparing numbers: set-less-than (slt)

• Conditional execution: branch-on-equal
(beq) and branch-on-not-equal (bne)

• Do we need anything else?

Relevant Instructions

• Comparing numbers: set-less-than (slt)

• Conditional execution: branch-on-equal
(beq) and branch-on-not-equal (bne)

• Do we need anything else?

• This is sufficient

if (x == 0) {
 printf(“x is zero”);
}

.data
x_is_zero:
 .asciiz “x is zero”

.text
 bne $t0, $zero, after_print
 li $v0, 4
 la $a0, x_is_zero
 syscall
after_print:
 li $v0, 10
 syscall

Loops

• How might we translate the following to
assembly?

sum = 0;
while (n != 0) {
 sum = sum + n;
 n--;
}

Control Structure
Examples

•max.asm

•sort2.asm

•add_0_to_n.asm

Memory

Accessing Memory

• Two base instructions: load-word (lw) and
store-word (sw)

• MIPS lacks instructions that do more with
memory than access it (e.g., retrieve
something from memory and add)

• Mark of RISC architecture

Global Variables

• Typically, global variables are placed directly
in memory, not registers

• Why might this be?

Global Variables

• Typically, global variables are placed directly
in memory, not registers

• Why might this be?

• Not enough registers

