
CS64 Week 3 Lecture 1
Kyle Dewey

Overview

• Exam next week (Tuesday)!

• More branches in MIPS

• Memory in MIPS

• MIPS Calling Convention

More Branches in MIPS

•else_if.asm

•nested_if.asm

•nested_else_if.asm

Memory in MIPS

Accessing Memory

• Two base instructions: load-word (lw) and
store-word (sw)

• MIPS lacks instructions that do more with
memory than access it (e.g., retrieve
something from memory and add)

• Mark of RISC architecture

Global Variables

• Typically, global variables are placed directly
in memory, not registers

• Why might this be?

Global Variables

• Typically, global variables are placed directly
in memory, not registers

• Why might this be?

• Not enough registers

Global Variable Example

•access_global.asm

Arrays

• Question: as far as memory is concerned,
what is the major difference between an
array and a global variable?

Arrays

• Question: as far as memory is concerned,
what is the major difference between an
array and a global variable?

• Arrays contain multiple elements

Array Examples

•print_array1.asm

•print_array2.asm

•print_array3.asm

MIPS Calling
Convention

Functions

• Up until this point, we have not discussed
functions

• Why not?

Functions

• Up until this point, we have not discussed
functions

• Why not?

• Memory is a must for the call stack

• ...though we can make some progress
without it

Implementing Functions

• What capabilities do we need for functions?

Implementing Functions

• What capabilities do we need for functions?

• Ability to execute code elsewhere

• Way to pass arguments

• Way to return values

Implementing Functions

• What capabilities do we need for functions?

• Ability to execute code elsewhere -
branches and jumps

• Way to pass arguments - registers

• Way to return values - registers

Jumping to Code

• We have ways to jump to code

• What about jumping back?

void foo() {
 bar();
 baz();
}

void bar() {
 ...
}

void baz() {
 ...
}

Jumping to Code
• We have ways to jump to code

• What about jumping back?

• Need a way to save where we were

• What might this entail on MIPS?

void foo() {
 bar();
 baz();
}

void bar() {
 ...
}

void baz() {
 ...
}

Jumping to Code
• We have ways to jump to code

• What about jumping back?

• Need a way to save where we were

• What might this entail on MIPS?

• A way to store the program counter

void foo() {
 bar();
 baz();
}

void bar() {
 ...
}

void baz() {
 ...
}

Calling Functions on
MIPS

• Two crucial instructions: jal and jr

• jal (jump-and-link) will simultaneously
jump to an address, and store the location
of the next instruction in register $ra

• jr (jump-register) will jump to the address
stored in a register, often $ra

Calling Functions on
MIPS

•simple_call.asm

Passing and Returning
Values

• We want to be able to call arbitrary
functions without knowing the
implementation details

• How might we achieve this?

Passing and Returning
Values

• We want to be able to call arbitrary
functions without knowing the
implementation details

• How might we achieve this?

• Designate specific registers for
arguments and return values

Passing and Returning
Values on MIPS

• Registers $a0 - $a3: argument
registers, for passing function arguments

• Registers $v0, $v1: return registers, for
passing return values

Passing and Returning
Values on MIPS

•print_ints.asm

•add_ints.asm

Problem
• What about this code makes this setup

break?

void foo() {
 bar();
}
void bar() {
 baz();
}
void baz() {}

Problem
• What about this code makes this setup

break?

• Need multiple copies of $ra

void foo() {
 bar();
}
void bar() {
 baz();
}
void baz() {}

Another Problem
• What about this code makes this setup

break?

void foo() {
 int a0, a1, ..., a20;
 bar();
}
void bar() {
 int a21, a22, ..., a40;
}

Another Problem
• What about this code makes this setup

break?

• Can’t fit all variables in registers at the
same time. How do I know which
registers are even usable without
looking at the code?

void foo() {
 int a0, a1, ..., a20;
 bar();
}
void bar() {
 int a21, a22, ..., a40;
}

Solution

• Store certain information in memory at
certain times

• Ultimately, this is where the call stack
comes from

Who saves what?

• Certain registers are designated to be
preserved across a call

• Preserved registers are saved by the
function called (e.g., $s0 - $s7)

• Non-preserved registers are saved by
the caller of the function (e.g., $t0 -
$t9)

• Question: why a split?

Who saves what?

• Certain registers are designated to be
preserved across a call

• Preserved registers are saved by the
function called (e.g., $s0 - $s7)

• Non-preserved registers are saved by
the caller of the function (e.g., $t0 -
$t9)

• Question: why a split? - not everything is
worth saving

Saved where?

• Register values are saved on the stack

• The top of the stack is held in $sp (stack-
pointer)

• The stack grows from high addresses to
low addresses

Register Saving Example

•save_registers.asm

Recursion

• This same setup handles nested function
calls and recursion - we can save $ra on
the stack

• Example: recursive_fibonacci.asm

More Recursion
• What’s special about the following

recursive function?

int recFac(int n, int accum) {
 if (n == 0) {
 return accum;
 } else {
 return recFac(n - 1, n * accum);
 }
}

More Recursion
• What’s special about the following recursive

function?

• It is tail recursive - with the right
optimization, uses constant stack space

• We can do this in assembly -
tail_recursive_factorial.asm

int recFac(int n, int accum) {
 if (n == 0) {
 return accum;
 } else {
 return recFac(n - 1, n * accum);
 }
}

