CS64 Week 3 Lecture |

Kyle Dewey

Overview

Exam next week (Tuesday)!

More branches in MIPS
Memory in MIPS
MIPS Calling Convention

More Branches in MIPS

®clse 1f.asm
® nested 1f.asm

® nested else 1f.asm

Memory in MIPS

Accessing Memory

Two base instructions: load-word (1w) and
store-word (sw)

MIPS lacks instructions that do more with
memory than access it (e.g., retrieve
something from memory and add)

® Mark of RISC architecture

Global Variables

® Jypically, global variables are placed directly
In memory, not registers

® VWhy might this be!

Global Variables

® Typically, global variables are placed directly
In memory, not registers

® Why might this be!

® Not enough registers

Global Variable Example

® access global.asm

Arrays

® Question:as far as memory is concerned,
what is the major difference between an
array and a global variable!?

Arrays

® Question:as far as memory is concerned,
what is the major difference between an
array and a global variable!?

® Arrays contain multiple elements

Array Examples

® print arrayl.asm
® print arrayz.asm

® print array3.asm

MIPS Calling

Convention

Functions

® Up until this point, we have not discussed
functions

® Why not!

Functions

® Up until this point, we have not discussed
functions

® Why not!?
® Memory is a must for the call stack

® ..though we can make some progress
without it

Implementing Functions

® What capabilities do we need for functions!?

Implementing Functions

® What capabilities do we need for functions!?
® Ability to execute code elsewhere
® Way to pass arguments

® Way to return values

Implementing Functions

® What capabilities do we need for functions!?

® Ability to execute code elsewhere -
branches and jumps

® Way to pass arguments - registers

® Way to return values - registers

Jumping to Code

® VWe have ways to jump to code

® What about jumping back?

vold foo () { |void bar () {|void baz () {
bar () ;

e } }
J

Jumping to Code

® Ve have ways to jump to code
® What about jumping back?
® Need a way to save where we were

® VWhat might this entail on MIPS?

vold foo () { |void bar () {|void baz () {
bar () ;

S } }
J

Jumping to Code

® VWe have ways to jump to code

® What about jumping back?
® Need a way to save where we were
® VWhat might this entail on MIPS?

® A way to store the program counter

vold foo () { |void bar () {|void baz () {
bar () ;

e } }
J

Calling Functions on
MIPS

® [wo crucial instructions: jal and jr

® jal (jump-and-link) will simultaneously

jump to an address, and store the location
of the next instruction in register $Sra

® jr (jump-register) will jump to the address
stored in a register, often Sra

Calling Functions on
MIPS

® simple call.asm

Passing and Returning
Values

Ve want to be able to call arbitrary
functions without knowing the
implementation details

How might we achieve this!?

Passing and Returning
Values

We want to be able to call arbitrary
functions without knowing the
implementation details

How might we achieve this!?

® Designate specific registers for
arguments and return values

Passing and Returning
Values on MIPS

® Registers Sa0 - S$a3:argument
registers, for passing function arguments

® Registers Sv0, $vl:return registers,for
passing return values

Passing and Returning
Values on MIPS

® print 1nts.asm

® add 1nts.asm

Problem

® What about this code makes this setup
break!?

volid foo () {
bar () ;

}

volid bar () {
baz () ;

}
volid baz () {}

Problem

® What about this code makes this setup
break?

® Need multiple copies of Sra

vold foo () {
bar () ;

}

vold bar () {
baz () ;

}
volid baz () {}

Another Problem

® What about this code makes this setup
break?

vold foo () {
int a0, al,
bar () ;

}

volid bar () {
int aZ2l, a2z,

J

Another Problem

® What about this code makes this setup
break!?

e Can’t fit all variables in registers at the
same time. How do | know which
registers are even usable without
looking at the code!?

vold foo () {
int a0, al,
bar () ;

}

volid bar () {
int aZ2l, a2z,

J

Solution

® Store certain information in memory at
certain times

e Ultimately, this is where the call stack
comes from

Who saves what!

® Certain registers are designated to be
preserved across a call

® Preserved registers are saved by the
function called (e.g., $s0 - $s7)

® Non-preserved registers are saved by
the caller of the function (e.g., St0 -

5t 9)

® Question: why a split?

Who saves what!

® Certain registers are designated to be
preserved across a call

® Preserved registers are saved by the
function called (e.g., $s0 - $s7)

® Non-preserved registers are saved by
the caller of the function (e.g., St0 -

5t 9)

® Question: why a split! - not everything is
worth saving

Saved where!

® Register values are saved on the stack

® The top of the stack is held in $sp (stack-
pointer)

® The stack grows from high addresses to
low addresses

Register Saving Example

® save regilisters.asm

Recursion

® This same setup handles nested function
calls and recursion - we can save $Sra on

the stack

® Example: recursive fibonacci.asm

More Recursion

® What's special about the following
recursive function?

int recFac(int n, 1nt accum) {
1f (n == 0) {
return accum;
} else {
return recFac((n - 1,

J

More Recursion

® What's special about the following recursive
function!?

® |t is tail recursive - with the right
optimization, uses constant stack space

® We can do this in assembly -

tail recursive factorilial.asm

int recFac(int n, 1nt accum) {
1f (n == 0) |
return accum;
} else {
return recFac((n - 1,

