
CS64 Week 5 Lecture 1
Kyle Dewey

Overview

• Recursion in the MIPS calling convention

• Tail call optimization

• Introduction to circuits

• Digital design: single bit adders

• Karnaugh maps

Recursion in MIPS

Quick MIPS Calling
Convention Review

•nested_calls.asm

•save_registers.asm

Recursion

• This same setup handles nested function
calls and recursion - we can save $ra on
the stack

• Example: recursive_fibonacci.asm

More Recursion
• What’s special about the following

recursive function?

int recFac(int n, int accum) {
 if (n == 0) {
 return accum;
 } else {
 return recFac(n - 1, n * accum);
 }
}

More Recursion
• What’s special about the following recursive

function?

• It is tail recursive - with the right
optimization, uses constant stack space

• We can do this in assembly -
tail_recursive_factorial.asm

int recFac(int n, int accum) {
 if (n == 0) {
 return accum;
 } else {
 return recFac(n - 1, n * accum);
 }
}

Dispelling the Magic:
Circuits

Why Binary?

• Very convenient for a circuit

• Two possible states: on and off

• 0 and 1 correspond to on and off

Relationship to Bitwise
Operations

• You’re already familiar with bitwise OR,
AND, XOR, and NOT

• These same operations are fundamental to
circuits

• Basic building blocks for more complex
things

Single Bits

• For the moment, we will deal only with
individual bits

• Later, we’ll see this isn’t actually that
restrictive

Operations on Single
Bits: AND

0

0
0

0

1
0

1

0
0

1

1
1

Operations on Single
Bits: OR

0
0

0
0
1

1

1
0

1 1
1

1

Operations on Single
Bits: XOR

0
0

0
0
1

1

1
0

1
1
1

0

Operations on Single
Bits: NOT

0 1 1 0

Recall: Single Bit Adders

+

I1 I2

CI CO

R

-We had defined a single bit adder that worked like the above...

Stringing them Together

+

A0 B0

0

R0

+

R1

+ C

R2

For two three-bit numbers, A and B, resulting in
a three-bit result R

A1 B1 A2 B2

+

0 0

0 0

0

+

0 1

0 0

1

+

1 0

0 0

1

+

1 1

0 1

0

+

0 0

1 0

1

+

0 1

1 1

0

+

1 0

1 1

0

+

1 1

1 1

1

As a Truth Table

+

I1 I2

CI CO

R

CI I1 I2 CO R

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

-Inputs and outputs are separated by a line

As a Truth Table

+

I1 I2

CI CO

R

CI I1 I2 CO R

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Question: how can
this be turned into a

circuit?

-As in, how can we utilize the gates from before to implement this?

Sum of Products

• Variables: A, B, C...

• Negation of a variable: A, B, C...

-Negating a variable is denoted by putting a bar above it

Sum of Products

• Another way to look at OR: sum (+)

• Another way to look at AND: multiplication (*)

A + B

A * B AB

Sum of Products
Example

A B O

0 0 0

0 1 1

1 0 1

1 1 0

-Say we have this truth table

Sum of Products
Example

A B O

0 0 0

0 1 1

1 0 1

1 1 0

-We look at the rows with a 1 result

Sum of Products
Example

A B O

0 0 0

0 1 1

1 0 1

1 1 0

O = A*B

-For each such row, we generate a product

Sum of Products
Example

A B O

0 0 0

0 1 1

1 0 1

1 1 0

O = A*B + A*B

-For each such row, we generate a product

Sum of Products
CI I1 I2 CO R

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Question: What would
the sum of products

look like for this table?
(Note: need one
equation for each

output.)

Sum of Products
CI I1 I2 CO R

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Question: What would
the sum of products

look like for this table?
(Note: need one
equation for each

output.)

Answer in the
presenter notes.

-Using `!A` to mean the negation of `A`
Co = !Ci*I1*I2 + Ci*!I1*I2 + Ci*I1*!I2 + CiI1I2
R = !Ci*!I1*I2 + !Ci*I1*!I2 + Ci*!I1*!I2 + CiI1I2

In-Class Example: Shift
Left by 1

Karnaugh Maps

-Material derived from The Essentials of Computer Organization and Architecture 2nd
edition, by Linda Null and Julia Lobur

Motivation

• Unnecessarily large programs: bad

• Unnecessarily large circuits: Very Bad™

• Why?

Motivation

• Unnecessarily large programs: bad

• Unnecessarily large circuits: Very Bad™

• Why?

• Bigger circuits = bigger chips =
higher cost (non-linear too!)

• Longer circuits = more time
needed to move electrons through
= slower

Simplification

• Real-world formulas can often be simplified

• How might we simplify the following?

R = A*B + !A*B

-How might we simplify this?

Simplification

R = A*B + !A*B

R = B(A + !A)

R = B(true)

R = B

• Real-world formulas can often be simplified

• How might we simplify the following?

Scaling Up

• Performing this sort of algebraic
manipulation by hand can be tricky

• We can use Karnaugh maps to make it
immediately apparent as to what can be
simplified

Example
R = A*B + !A*B

-Start with the sum of products

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

-Build the truth table

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

A
B

0

1

0 1

0

0

1

1

-Build the K-map

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

A
B

0

1

0 1

0

0

1

1

-Group adjacent (row or column-wise, NOT diagonal) 1’s in powers of two (groups of 2, 4,
8...)
-

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

A
B

0

1

0 1

0

0

1

1

-The values that stay the same are saved, the rest are discarded
-This works because this means that the inputs that differ are irrelevant to the final value,
and so they can be removed

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

A
B

0

1

0 1

0

0

1

1

R = B

-The values that stay the same are saved, the rest are discarded
-This works because this means that the inputs that differ are irrelevant to the final value,
and so they can be removed

Three Variables
• We can scale this up to three variables, by

combining two variables on one axis

• The combined axis must be arranged such
that only one bit changes per position

A
BC

0

1

00 01

?

11 10

?

?

?

?

?

?

?

Three Variable Example

R = !A!BC + !ABC + A!BC + ABC

-Start with this formula

R = !A!BC + !ABC + A!BC + ABC

A B C R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

-Build the truth table

R = !A!BC + !ABC + A!BC + ABC

A B C R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A
BC

0

1

00 01

0

11 10

0

1

1

1

1

0

0

-Build the K-map

R = !A!BC + !ABC + A!BC + ABC

A B C R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A
BC

0

1

00 01

0

11 10

0

1

1

1

1

0

0

-Select the biggest group possible, in this case a square
-In order to get the most minimal circuit, we must always select the biggest groups possible

R = !A!BC + !ABC + A!BC + ABC

A B C R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A
BC

0

1

00 01

0

11 10

0

1

1

1

1

0

0

R = C

-Save the ones that stay the same in a group, discarding the rest

Another Three Variable
Example

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

-Start with this formula

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

-Build the truth table

A
BC

0

1

00 01

1

11 10

1

1

0

1

0

1

1

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

-Build the K-map

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

-Select the biggest groups possible
-Note that the values “wrap around” the table

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

-Save the ones that stay the same in a group, discarding the rest
-This must be done for each group

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

-Save the ones that stay the same in a group, discarding the rest
-This must be done for each group

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

R =!A + !C

-Save the ones that stay the same in a group, discarding the rest
-This must be done for each group

Four Variable Example

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

-Take this formula

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

-For space reasons, we go directly to the K-map

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

-Group things up
-The edges logically wrap around!
-Groups may overlap each other

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C

-Look at the bits that don’t change
-First for the cube

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C + !B!D

-Look at the bits that don’t change
-Second for the cube on the edges

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C + !B!D + !AC!D

-Look at the bits that don’t change
-Third for the line

K-Map Rules in
Summary (1)

• Groups can contain only 1s

• Only 1s in adjacent groups are allowed (no
diagonals)

• The number of 1s in a group must be a
power of two (1, 2, 4, 8...)

• The groups must be as large as legally
possible

• All 1s must belong to a group, even if it’s a
group of one element

• Overlapping groups are permitted

• Wrapping around the map is permitted

• Use the fewest number of groups possible

K-Map Rules in
Summary (2)

