CS64 Week 5 Lecture |

Kyle Dewey

Overview

Recursion in the MIPS calling convention
Tail call optimization

Introduction to circuits

Digital design: single bit adders

Karnaugh maps

Recursion in MIPS

Quick MIPS Calling
Convention Review

® nested calls.asm

® save regilisters.asm

Recursion

® This same setup handles nested function
calls and recursion - we can save $Sra on

the stack

® Example: recursive fibonacci.asm

More Recursion

® What's special about the following
recursive function?

int recFac(int n,

1f (n ==
return
} else {
return

J

0) A

aCCUull,

reclFac (n

L,

int accum) {

n * accum) ;

More Recursion

® What’s special about the following recursive
function?

® |t is tail recursive - with the right
optimization, uses constant stack space

® We can do this in assembly -
tail recursive factorilial.asm

int recFac(int n, 1nt accum) {

1f (n == 0) {
return accum;
} else {

return rectFac(n - 1, n * accum);

Dispelling the Magic:
Circuits

Why Binary!?

® Very convenient for a circuit
® [wo possible states: on and off

® 0 and 1 correspond to on and off

Relationship to Bitwise
Operations

® You're already familiar with bitwise OR,
AND, XOR, and NOT

® These same operations are fundamental to
circuits

® Basic building blocks for more complex
things

Single Bits

® For the moment, we will deal only with
individual bits

® |ater, we'll see this isn’t actually that
restrictive

Operations on Single
Bits: AND

0
0

Operations on Single
Bits: OR

0

0
1

1

D | D
) >) -

1

Operations on Single
Bits: XOR

Operations on Single
Bits: NOT

o<{>o—1 1<[>o—o

Recall: Single Bit Adders

-We had defined a single bit adder that worked like the above...

Stringing them Together

For two three-bit numbers, A and B, resulting in
a three-bit result R

As a Truth Table

o5 1; Io Co R

—~ Rl |lo|lo|l o o
—~|lrlo|lo|lr |~ oo
—~|lo|lr~r|lo|lRr|oOo|]| O
—~ |l lOo|lRr|oOo|l oo
—~|lolol|l+~r|lo|l]|+~]|oO

-Inputs and outputs are separated by a line

As a Truth Table

Question: how can
this be turned into a
circuit!?

o5 1; Io Co R

11 I»

—~ Rl |lo|lo|l o o
—~|lrlo|lo|lr |~ oo
—~|lo|lr~r|lo|lRr|oOo|]| O
—~ |l lOo|lRr|oOo|l oo
—~|lolol|l+~r|lo|l]|+~]|oO

-As in, how can we utilize the gates from before to implement this?

Sum of Products

® Variables: A, B, C...

e Negation of a variable: 2, B, C...

-Negating a variable is denoted by putting a bar above it

Sum of Products

® Another way to look at OR:sum (+)

A + B

® Another way to look at AND: multiplication (*)

A * B AB

Sum of Products
Example

0 0 0
0 1 1
1 0 1
1 1 0

-Say we have this truth table

Sum of Products
Example

0 0 0
0 1 1
1 0 1
1 1 0

-We look at the rows with a 1 result

Sum of Products
Example

0 0 0
0 1 1 O = A*B
1 0 1
1 1 0

—-For each such row, we generate a product

Sum of Products
Example

0 0 0
0 1 1
1 0 1
1 1 0

O = A*B +

A*B

—-For each such row, we generate a product

Sum of Products

Lo w Question:What would

the sum of products

& 1K

look like for this table?

(Note: need one
equation for each

output.)

1 1 P P O] O] O©O| O
1 I P Ol P O] O] O

0
1
1
0
1
0
0
1

—~ |l —r|lololr|—~r]|]|o| o
—~lo|lr|lo|lr|lo|l]| o

Sum of Products

Lo w Question:What would

the sum of products
look like for this table!?

& 1K

0

1

; (Note: need one
equation for each

0 output.)

1

0

0

1

Answer in the
presenter notes.

Rl Rl Rr|lo]lo|l ol O
Rl |lo|lol|l || O] O
—~lol|lrr|lol|lr|lo|lr]| o
Rl Rr|lOolrRr|loOo|l Ol O

-Using !A" to mean the negation of A~
Co = ICi*I11*12 + Ci*11*12 + Ci*I1*12 + Cilll2
R =I1Ci*1*I12 + 'Ci*I11*12 + Ci*1*12 + Cilll2

In-Class Example: Shift
Left by |

Karnaugh Maps

—Material derived from The Essentials of Computer Organization and Architecture 2nd
edition, by Linda Null and Julia Lobur

Motivation

® Unnecessarily large programs: bad

® Unnecessarily large circuits:Very Bad ™

¢ Why!?

Motivation

® Unnecessarily large programs: bad
® Unnecessarily large circuits:Very Bad ™
® Why!

® Bigger circuits = bigger chips =
higher cost (non-linear too!)

® | onger circuits = more time
needed to move electrons through
= slower

Simplification

® Real-world formulas can often be simplified
® How might we simplify the following?

R = A*B + 'A*B

-How might we simplify this?

Simplification

® Real-world formulas can often be simplified
® How might we simplify the following?

R = A*B + 'A*B
R = B(A + !'A)

R = B(true)

R = B

Scaling Up

® Performing this sort of algebraic
manipulation by hand can be tricky

® We can use Karnaugh maps to make it
immediately apparent as to what can be
simplified

Example

R = A*B + !A*B

-Start with the sum of products

Example

R = A*B + 'A*B

0 0 0
0 1 1
1 0 0
1 1 1

—-Build the truth table

0 1 1

0 0
1 0 0

1 0
1 1 1

-Build the K-map

0 1 1

0 0 1
1 0 0

1 0 1
1 1 1

-Group adjacent (row or column-wise, NOT diagonal) 1’s in powers of two (groups of 2, 4,
8...)

0 1 1

0 0 1
1 0 0

1 0 1
1 1 1

-The values that stay the same are saved, the rest are discarded
-This works because this means that the inputs that differ are irrelevant to the final value,
and so they can be removed

0 1 1

0 0 1
1 0 0

1 0 1
1 1 1

-The values that stay the same are saved, the rest are discarded
-This works because this means that the inputs that differ are irrelevant to the final value,
and so they can be removed

Three Variables

® We can scale this up to three variables, by
combining two variables on one axis

® The combined axis must be arranged such
that only one bit changes per position

BC
AN 00 01 11 10

0 ? [? ?

Three Variable Example

R = 'AIBC + 'ABC + A!BC + ABC

-Start with this formula

R = IA!'BC + 'ABC + A!BC + ABC

:

Rl oOo|lRr|lOo|lRrRr|l|Oo|]| O

1 1T P P O] O] O] O
1 PPl ool ol R] O] O
P | Ol ROl R | O L] O @

—-Build the truth table

R

:

Rl oOo|lRr|lOo|lRrRr|l|Oo|]| O

1 1T P P O] O] O] O
1 PPl ool ol R] O] O
P | Ol ROl R | O L] O @

'ATBC +

'ABC + A!BC + ABC

-Build the K-map

R = 'AIBC + 'ABC + A!BC + ABC

:

P | Ol ROl R | O L] O @

BC
00 01 11 10

Pl ROl O] O] O
Pl Rr|lOo|loOo|l R || O] O
Rl oOo|lRr|lOo|lRrRr|l|Oo|]| O

-Select the biggest group possible, in this case a square
-In order to get the most minimal circuit, we must always select the biggest groups possible

R = 'AIBC + 'ABC + A!BC + ABC

:

R lRL|l PR, O|lO|l O] O
Rl |lOo|lO|l R |~ O] O

Rlo|lRrRr|lOo|lRrRr|lOo|l]| O @
Rl oOo|lRr|lOo|lRrRr|l|Oo|]| O

-Save the ones that stay the same in a group, discarding the rest

Another Three Variable
Example

R = IAB!C + 'AIBC + !'ABC +
'AB!C + A!B!C + ABI!IC

-Start with this formula

R = IA'B!IC + 'AI!BC + !'ABC +
'AB!C + A!B!C + AB!C

:

oO|lrr|lOo|l ||| RF]

1 1T P P O] O] O] O
1 PPl ool ol R] O] O
P | Ol ROl R | O L] O @

—-Build the truth table

R

:

oO|lrr|lOo|l ||| RF]

1 1T P P O] O] O] O
1 PPl ool ol R] O] O
P | Ol ROl R | O L] O @

'AIB!C + TAIBC + !ABC +
'AB!C + A!B!C + ABI!IC

-Build the K-map

R = IAIBIC +

'ATBC +

'ABC +

'AB!C + A!B!C + ABI!IC

:

BC

A __ 00

01

11 10

R lRL|l PR, O|lO|l O] O
Rl |lOo|lO|l R |~ O] O
Rlo|lRrRr|lOo|lRrRr|lOo|l]| O @
o|lr|lo|lr~r|FHL]| L] L] RF|w

-Select the biggest groups possible
—Note that the values “wrap around” the table

R = IAB!C + 'AIBC + !'ABC +
'AB!C + A!B!C + ABI!IC

:

BC
AN 00 01 11 10

R lRL|l PR, O|lO|l O] O
Rl |lOo|lO|l R |~ O] O
Rlo|lRrRr|lOo|lRrRr|lOo|l]| O @
o|lr|lo|lr~r|FHL]| L] L] RF|w

-Save the ones that stay the same in a group, discarding the rest
-This must be done for each group

R = IAB!C + 'AIBC + !'ABC +
'AB!C + A!B!C + ABI!IC

:

RPlRRr Rl ROl Oo]l O] O
Rl |lO|lO|RL|RFRL] O] O
Rrlo|lRr~r|lO|lRrRr|O|]| OF®
oO|lrr|lOo|l ||| RF]

>

-

O

O

|_\

|_\

|_\

=

-Save the ones that stay the same in a group, discarding the rest
-This must be done for each group

R = IAB!C + 'AIBC + !'ABC +
'AB!C + A!B!C + ABI!IC

:

R =!A + IC

RPlRRr Rl ROl Oo]l O] O
Rl |lO|lO|RL|RFRL] O] O
Rrlo|lRr~r|lO|lRrRr|O|]| OF®
oO|lrr|lOo|l ||| RF]

>

-

O

O

|_\

|_\

|_\

=

-Save the ones that stay the same in a group, discarding the rest
-This must be done for each group

Four Variable Example

R = 'AIB!IC!D + TA!BICD + !'A!BC!D +
'ABC!D + A!B!C!D + A'B!CD + A!BC!D

-Take this formula

R = 'AIB!IC!D + TA!BICD + !'A!BC!D +
'ABC!D + A!B!C!D + A'B!CD + A!BC!D

CD
aBN___00 01 11 10

00 1 1 0 1
01 0 0 0 1
11 0 0 0 0
10 1 1 0 1

—For space reasons, we go directly to the K-map

R = 'AIB!IC!D + TA!BICD + !'A!BC!D +
'ABC!D + A!B!C!D + A'B!CD + A!BC!D

CD
aBN___00 01 11 10

oo\} 1 0 <//

01 0 0 0 1

11 0 0 0 0

o| 5] o @\

—~Group things up
-The edges logically wrap around!
-Groups may overlap each other

R = 'AIB!IC!D + TA!BICD + !'A!BC!D +
'ABC!D + A!B!C!D + A'B!CD + A!BC!D

01 0 0 0 1

11 0 0 0 0

o] 5] e A

-Look at the bits that don’t change
~First for the cube

R = 'AIB!IC!D + TA!BICD + !'A!BC!D +
'ABC!D + A!B!C!D + A'B!CD + A!BC!D

R =IB!'C + !BI!D

CD
ap___ 00 01 11 10

oo\} 1 0 <//

01 0 0 0 1

11 0 0 0 0

a| 5] o @\

-Look at the bits that don’t change
-Second for the cube on the edges

R = 'AIB!IC!D + TA!BICD + !'A!BC!D +
'ABC!D + A!B!C!D + A'B!CD + A!BC!D

R =!B!C + !'B!D + AC!D

CD
aBN___00 01 11 10

oo\} 1 0 <//

01 0 0 0 1

11 0 0 0 0

o] 5 e A

-Look at the bits that don’t change
-Third for the line

K-Map Rules in
Summary ()

Groups can contain only 1s

Only 1s in adjacent groups are allowed (no
diagonals)

The number of 1sin a group must be a
power of two (l,2,4,8...)

The groups must be as large as legally
possible

K-Map Rules in
Summary (2)

All 1s must belong to a group, even if it’s a
group of one element

Overlapping groups are permitted
Wrapping around the map is permitted

Use the fewest number of groups possible

