CS64 Week 5 Lecture I

Kyle Dewey

Overview

- Recursion in the MIPS calling convention
- Tail call optimization
- Introduction to circuits
- Digital design: single bit adders
- Karnaugh maps

Recursion in MIPS

Quick MIPS Calling Convention Review

- nested calls.asm
- save_registers.asm

Recursion

- This same setup handles nested function calls and recursion - we can save \$ra on the stack
- Example: recursive fibonacci.asm

More Recursion

 What's special about the following recursive function?

```
int recFac(int n, int accum) {
  if (n == 0) {
    return accum;
  } else {
    return recFac(n - 1, n * accum);
  }
}
```

More Recursion

- What's special about the following recursive function?
 - It is *tail recursive* with the right optimization, uses constant stack space
 - We can do this in assembly tail_recursive_factorial.asm

```
int recFac(int n, int accum) {
  if (n == 0) {
    return accum;
  } else {
    return recFac(n - 1, n * accum);
  }
}
```

Dispelling the Magic: Circuits

Why Binary?

- Very convenient for a circuit
 - Two possible states: on and off
 - 0 and 1 correspond to on and off

Relationship to Bitwise Operations

- You're already familiar with bitwise OR, AND, XOR, and NOT
- These same operations are fundamental to circuits
 - Basic building blocks for more complex things

Single Bits

- For the moment, we will deal only with individual bits
- Later, we'll see this isn't actually that restrictive

Operations on Single Bits: AND

Operations on Single Bits: OR

Operations on Single Bits: XOR

Operations on Single Bits: NOT

Recall: Single Bit Adders

Stringing them Together

For two three-bit numbers, A and B, resulting in a three-bit result R

As a Truth Table

C_{I}	I ₁	I ₂	Co	R
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

As a Truth Table

Question: how can this be turned into a circuit?

C_{I}	I ₁	I ₂	Co	R
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

⁻As in, how can we utilize the gates from before to implement this?

Sum of Products

- Variables: A, B, C...
- Negation of a variable: \overline{A} , \overline{B} , \overline{C} ...

⁻Negating a variable is denoted by putting a bar above it

Sum of Products

Another way to look at OR: sum (+)

$$A + B$$

Another way to look at AND: multiplication (*)

A	В	0
0	0	0
0	1	1
1	0	1
1	1	0

⁻Say we have this truth table

A	В	0
0	0	0
0	1	1
1	0	1
1	1	0

A	В	0
0	0	0
0	1	1
1	0	1
1	1	0

$$O = \overline{A}*B$$

⁻For each such row, we generate a product

A	В	0
0	0	0
0	1	1
1	0	1
1	1	0

$$O = \overline{A}*B + \overline{A*B}$$

Sum of Products

C_{I}	I ₁	I ₂	Co	R
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Question: What would the sum of products look like for this table?

(Note: need one equation for each output.)

Sum of Products

C_{I}	I ₁	I ₂	Co	R
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Question: What would the sum of products look like for this table?

(Note: need one equation for each output.)

Answer in the presenter notes.

In-Class Example: Shift Left by I

Karnaugh Maps

Motivation

- Unnecessarily large programs: bad
- Unnecessarily large circuits: Very Bad[™]
 - Why?

Motivation

- Unnecessarily large programs: bad
- Unnecessarily large circuits: Very Bad[™]
 - Why?
 - Bigger circuits = bigger chips = higher cost (non-linear too!)
 - Longer circuits = more time
 needed to move electrons through
 = slower

Simplification

- Real-world formulas can often be simplified
 - How might we simplify the following?

$$R = A*B + !A*B$$

Simplification

- Real-world formulas can often be simplified
 - How might we simplify the following?

$$R = A*B + !A*B$$
 $R = B(A + !A)$
 $R = B(true)$
 $R = B$

Scaling Up

- Performing this sort of algebraic manipulation by hand can be tricky
- We can use Karnaugh maps to make it immediately apparent as to what can be simplified

Example

R = A*B + !A*B

R = A*B + !A*B

A	В	0
0	0	0
0	1	1
1	0	0
1	1	1

⁻Build the truth table

$$R = A*B + !A*B$$

A	В	0
0	0	0
0	1	1
1	0	0
1	1	1

$$R = A*B + !A*B$$

A	В	0
0	0	0
0	1	1
1	0	0
1	1	1

-Group adjacent (row or column-wise, NOT diagonal) 1's in powers of two (groups of 2, 4, 8...)

$$R = A*B + !A*B$$

A	В	O
0	0	0
0	1	1
1	0	0
1	1	1

- -The values that stay the same are saved, the rest are discarded
- -This works because this means that the inputs that differ are irrelevant to the final value, and so they can be removed

$$R = A*B + !A*B$$

A	В	0
0	0	0
0	1	1
1	0	0
1	1	1

- -The values that stay the same are saved, the rest are discarded
- -This works because this means that the inputs that differ are irrelevant to the final value, and so they can be removed

Three Variables

- We can scale this up to three variables, by combining two variables on one axis
- The combined axis must be arranged such that only one bit changes per position

Three Variable Example

R = !A!BC + !ABC + A!BC + ABC

⁻Start with this formula

$$R = !A!BC + !ABC + A!BC + ABC$$

A	В	С	R
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

⁻Build the truth table

$$R = !A!BC + !ABC + A!BC + ABC$$

A	В	С	R					
	0	0	0					
0		1	1					
-	1	0	0		_			
	1	1	1		3	3C 00	3C 00 01	
	0	0	0	A				
,	0	1	1	0		0	0 1	0 1 1
1	1	0	0	1		0		
1	1	1	1	1		U		0 1 1

$$R = !A!BC + !ABC + A!BC + ABC$$

A	В	С	R					
0	0	0	0					
0	0	1	1					
0	1	0	0					
0	1	1	1		C 00	01	11	10
1	0	0	0	A	00	<u> </u>		<u> </u>
1	0	1	1	0	0	1	1	0
1	1	0	0			4	4	
1	1	1	1	1	0	1	1	U

⁻Select the biggest group possible, in this case a square

⁻In order to get the most minimal circuit, we must always select the biggest groups possible

$$R = !A!BC + !ABC + A!BC + ABC$$

ABCR					
0 0 0					
0 0 1 1			R :	= C	
0 1 0 0	_				
0 1 1 1	B	C	01	11	10
1 0 0 0	A	00	U⊥	<u>+ + </u>	<u> </u>
1 0 1 1	0	0	1	1	0
1 1 0 0			4	4	
1 1 1 1	1	U		1	U

-Save the ones that stay the same in a group, discarding the rest

Another Three Variable Example

$$R = !A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C$$

$$R = !A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C$$

A	В	С	R
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

⁻Build the truth table

$$R = !A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C$$

ABCR					
0 0 0 1					
0 0 1 1					
0 1 0 1					
0 1 1 1	BC	$\cap \cap$	01	1 1	10
1 0 0 1	A	00	<u> </u>	<u> </u>	<u> </u>
1 0 1 0	0	1	1	1	1
1 1 0 1		4			1
1 1 1 0	1	1	0	0	1

$$R = !A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C$$

ABCR					
0 0 0 1					
0 0 1 1					
0 1 0 1					
0 1 1 1	B	C 00	01	11	10
1 0 0 1	A		<u> </u>		<u> </u>
1 0 1 0	0	1	1	1	1
1 1 0 1			\sim	^	1
1 1 1 0		1	U	U	<u> </u>

⁻Select the biggest groups possible

⁻Note that the values "wrap around" the table

$$R = !A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C$$

A	В	С	R					
0	0	0	1					
0	0	1	1					
0	1	0	1	_				
0	1	1	1		C 00	01	11	10
1	0	0	1	A		<u> </u>	<u> </u>	
1	0	1	0	0	1	1	1	1
1	1	0	1			_		
1	1	1	0	1	1	U	O	

⁻Save the ones that stay the same in a group, discarding the rest

⁻This must be done for each group

$$R = !A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C$$

A	В	С	R					
0	0	0	1					
0	0	1	1					
0	1	0	1	_				
0	1	1	1		C	01	11	1
1	0	0	1	A \		<u> </u>	<u> </u>	<u> </u>
1	0	1	0	0	1	1	1	1
1	1	0	1				<u> </u>	1
1	1	1	0	1	1	U	U	

⁻Save the ones that stay the same in a group, discarding the rest

⁻This must be done for each group

$$R = !A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C$$

A	В	C	R					
0	0	0	1					
0	0	1	1			R =!	A + !C	
0	1	0	1	_				
0	1	1	1		C 00	01	11	1 0
1	0	0	1	A		<u> </u>	<u> </u>	<u> </u>
1	0	1	0	0	1	1	1	1
1	1	0	1			^		1
1	1	1	0	1	1	U	O	

⁻Save the ones that stay the same in a group, discarding the rest

⁻This must be done for each group

Four Variable Example

R = !A!B!C!D + !A!B!CD + !A!BC!D + !ABC!D + A!BC!D + A!BC!D + A!BC!D

⁻Take this formula

C	D			
AB	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	0	0	0	0
10	1	1	0	1

⁻For space reasons, we go directly to the K-map

- -Group things up
- -The edges logically wrap around!
- -Groups may overlap each other

⁻Look at the bits that don't change

⁻First for the cube

⁻Look at the bits that don't change

⁻Second for the cube on the edges

⁻Look at the bits that don't change

⁻Third for the line

K-Map Rules in Summary (I)

- Groups can contain only 1s
- Only 1s in adjacent groups are allowed (no diagonals)
- The number of 1s in a group must be a power of two (1, 2, 4, 8...)
- The groups must be as large as legally possible

K-Map Rules in Summary (2)

- All 1s must belong to a group, even if it's a group of one element
- Overlapping groups are permitted
- Wrapping around the map is permitted
- Use the fewest number of groups possible