
CS64 Week 6 Lecture 2
Kyle Dewey



Overview

• More Karnaugh maps

• Exploiting don’t cares in Karnaugh maps

• Multiplexers



More Karnaugh Maps



Another Three Variable 
Example



R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C
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Four Variable Example



R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D
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R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D
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R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D
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K-Map Rules in 
Summary (1)

• Groups can contain only 1s

• Only 1s in adjacent groups are allowed (no 
diagonals)

• The number of 1s in a group must be a 
power of two (1, 2, 4, 8...)

• The groups must be as large as legally 
possible



• All 1s must belong to a group, even if it’s a 
group of one element

• Overlapping groups are permitted

• Wrapping around the map is permitted

• Use the fewest number of groups possible

K-Map Rules in 
Summary (2)



Revisiting Problem
!A!BC + A!B!C + !ABC + !AB!C + A!BC
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Revisiting Problem
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Revisiting Problem
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Revisiting Problem
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Difference

• Algebraic solution: !BC + A!B!C + !AB

• K-map solution: !AC + A!B + !AB!C

• Question: why might these differ?
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fewest number of products possible

• Can be multiple minimal solutions
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Exploiting Don’t Cares in 
K-Maps



Don’t Cares

• Occasionally, a circuit’s output will be 
unspecified on a given input

• Occurs when an input’s value is invalid

• In these situations, we say the output is a 
don’t care, marked as an X in a truth table



Example: Binary Coded 
Decimal

• Occasionally, it is convenient to represent 
decimal numbers directly in binary, using 4-
bits per decimal digit

• For example, a digital display



Example: Binary Coded 
Decimal

• Not all binary values map to decimal digits

Binary Decimal
0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

Binary Decimal
1000 8

1001 9

1010 X

1011 X

1100 X

1101 X

1110 X

1111 X



Significance

• Recall that in a K-map, we can only group 1s

• Because the value of a don’t care is irrelevant, 
we can treat it as a 1 if it is convenient to do 
so (or a 0 if that would be more convenient)



Example
• A circuit that calculates if the binary coded 

decimal input % 2 == 0



Example
• A circuit that calculates if the binary coded 

decimal input % 2 == 0

I3 I2 I1 I0 R
0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1
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0 1 1 0 1

0 1 1 1 0

I3 I2 I1 I0 R
1 0 0 0 1

1 0 0 1 0

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X
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R = !I1!I0 + I1I0



Multiplexers



Motivation

• At this point, you’ve seen a lot of 
straightline circuits

• However, this doesn’t quite match up with 
respect to what a processor does.  Why?
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Motivation

• At this point, you’ve seen a lot of 
straightline circuits

• However, this doesn’t quite match up with 
respect to what a processor does.  Why?

• We don’t always do the same thing - it 
depends on the instruction

• What do we need here?

• Some form of a conditional



Conditional

R = (selector) ? A : B

• Assume selector, A, B, and R all hold a 
single bit

• How can we implement this using what we 
have seen so far?  (Hint: what does the 
truth table look like?)



R = (selector) ? A : B

S A B R
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R = (selector) ? A : B
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R = !S!AB + !SAB + SA!B + SAB
Unreduced sum-of-products:



R = (selector) ? A : B

S A B R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

R = !S!AB + !SAB + SA!B + SAB
Unreduced sum-of-products:

R = !SB + SA
Reduced sum-of-products:



Slight Modification

R = (selector) ? A : B

Original

R = (selector) ? doThis() : doThat()

Modified



Slight Modification

R = (selector) ? A : B

Original

R = (selector) ? doThis() : doThat()

Modified

Intended semantics: either doThis() or doThat() is 
executed.  Our formula from before doesn’t satisfy this 

property:

R = !S*doThat() + S*doThis()



Slight Modification

R = (selector) ? A : B

Original

R = (selector) ? doThis() : doThat()
Modified

• Fixing this is hard, but possible

• Involves circuitry we’ll learn later

• Oddly enough, this isn’t as big of a problem 
as it seems, and it’s ironically faster than 
doing just one or the other.  Why?



Slight Modification

R = (selector) ? A : B

Original

R = (selector) ? doThis() : doThat()
Modified

• Oddly enough, this isn’t as big of a problem 
as it seems, and it’s ironically faster than 
doing just one or the other.  Why? - 
branches executed in parallel at the 
hardware level.  Faster because extra 
circuitry is extra.



Multiplexer
• Component that does exactly this:

R = (selector) ? A : B

selector

A

B
R



Question

• Recall the arithmetic logic unit (ALU), 
which is used to add, subtract, shift, 
perform bitwise operations, etc.

• How might a multiplexer be useful for an 
ALU?

Opcode / Function



Question
• Recall the arithmetic logic unit (ALU), 

which is used to add, subtract, shift, 
perform bitwise operations, etc.

• How might a multiplexer be useful for an 
ALU? - Do all operations at once in 
parallel, and then use a multiplexer to 
select the one you want

Opcode / Function



Example

• Let’s design a one-bit ALU that can do 
bitwise AND and bitwise OR

• It has three inputs: A, B, and S, along with 
one output R

• S is a code provided indicating which 
operation to perform; 0 for AND and 1 for 
OR



Example

code

A

B

R



Bigger Multiplexers

• Can have a multiplexer with more than two 
inputs

• Need multiple select lines in this case

• Question: how many select lines do we 
need for a 4 input multiplexer?



Bigger Multiplexers
• Can have a multiplexer with more than two 

inputs

• Need multiple select lines in this case

• Question: how many select lines do we 
need for a 4 input multiplexer? - 2.  Values 
of different lines essentially encode 
different binary integers.



Bigger Multiplexers 

• We can build up bigger multiplexers from 
2-input multiplexers.  How?


