CS64 Week 6 Lecture 2

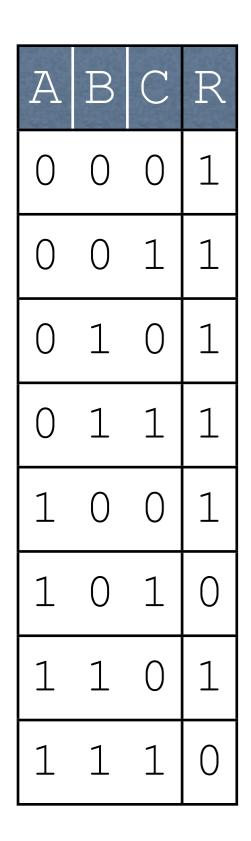
Kyle Dewey

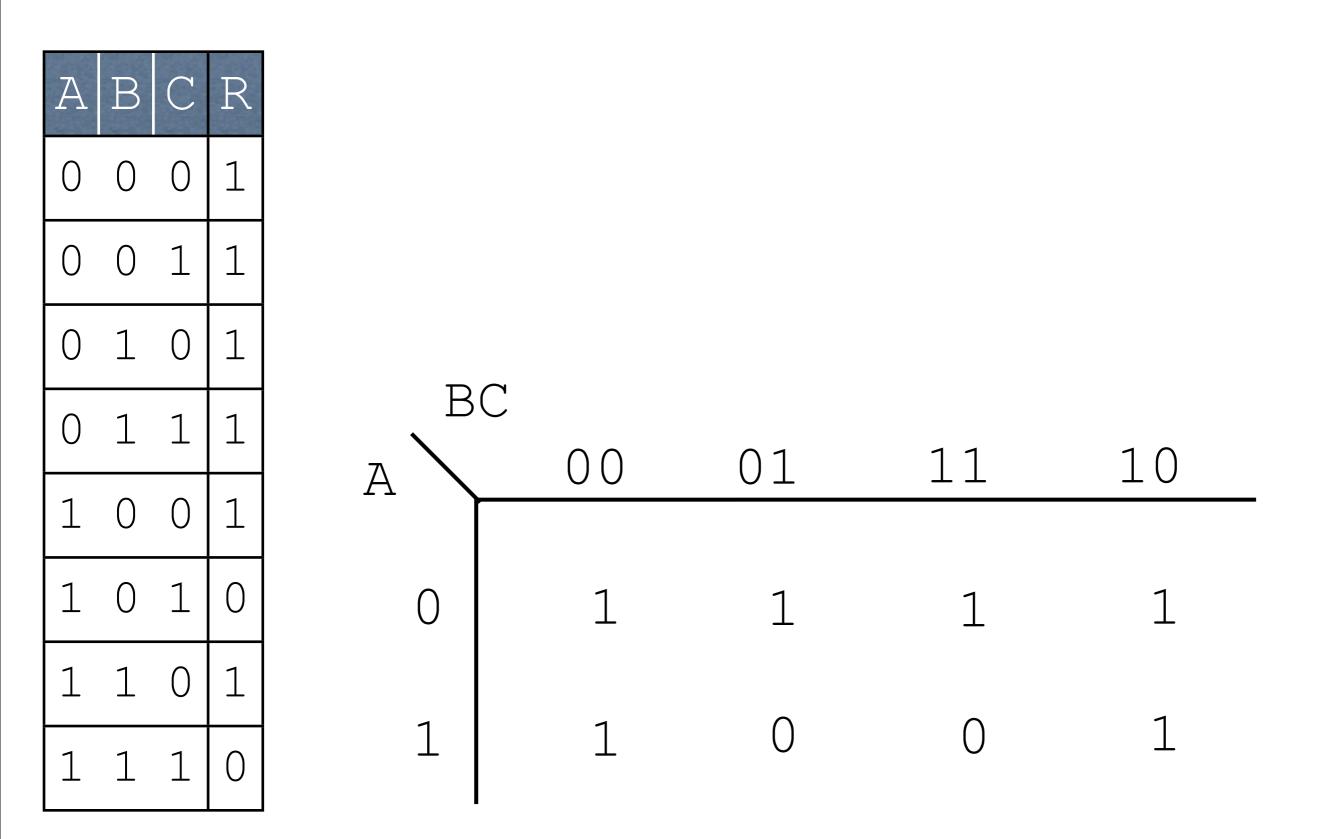
Overview

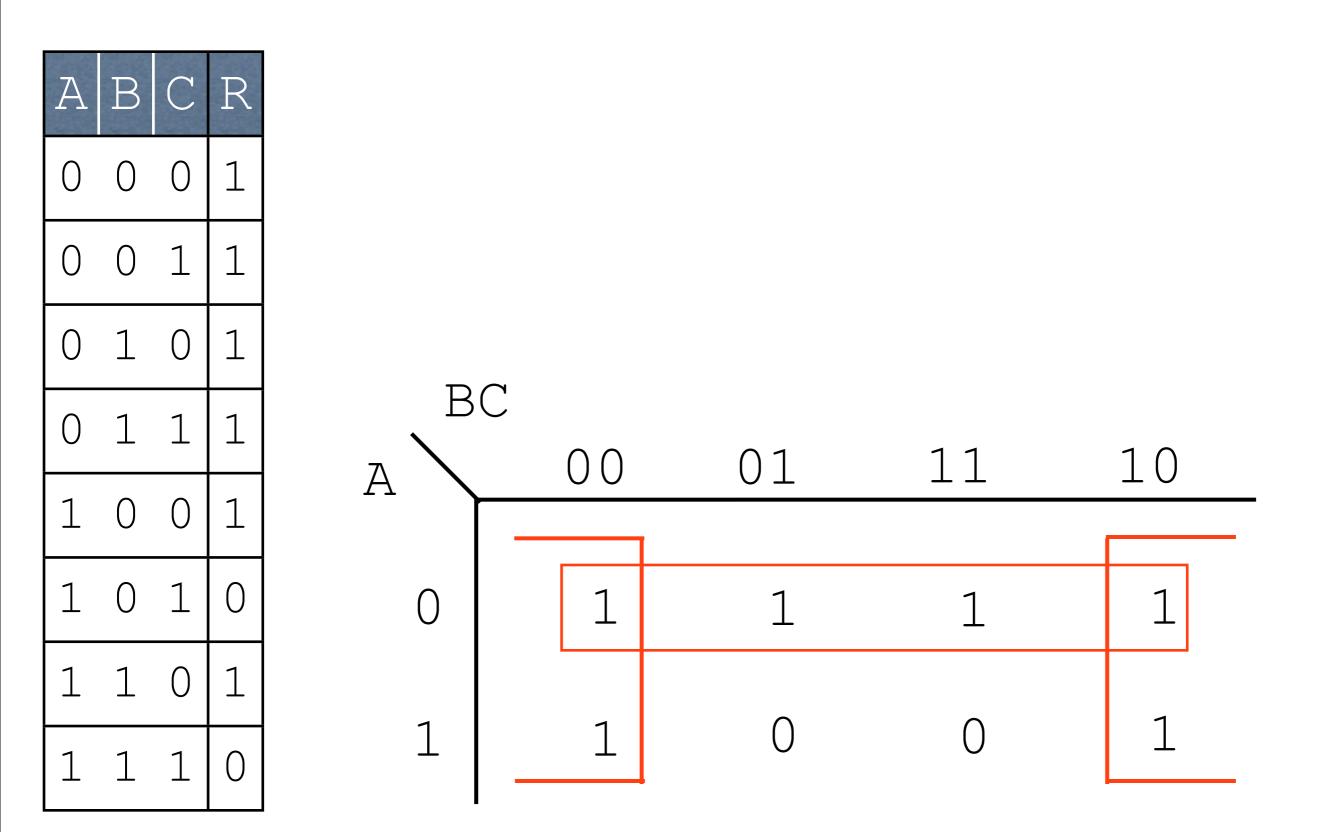
- More Karnaugh maps
- Exploiting *don't cares* in Karnaugh maps
- Multiplexers

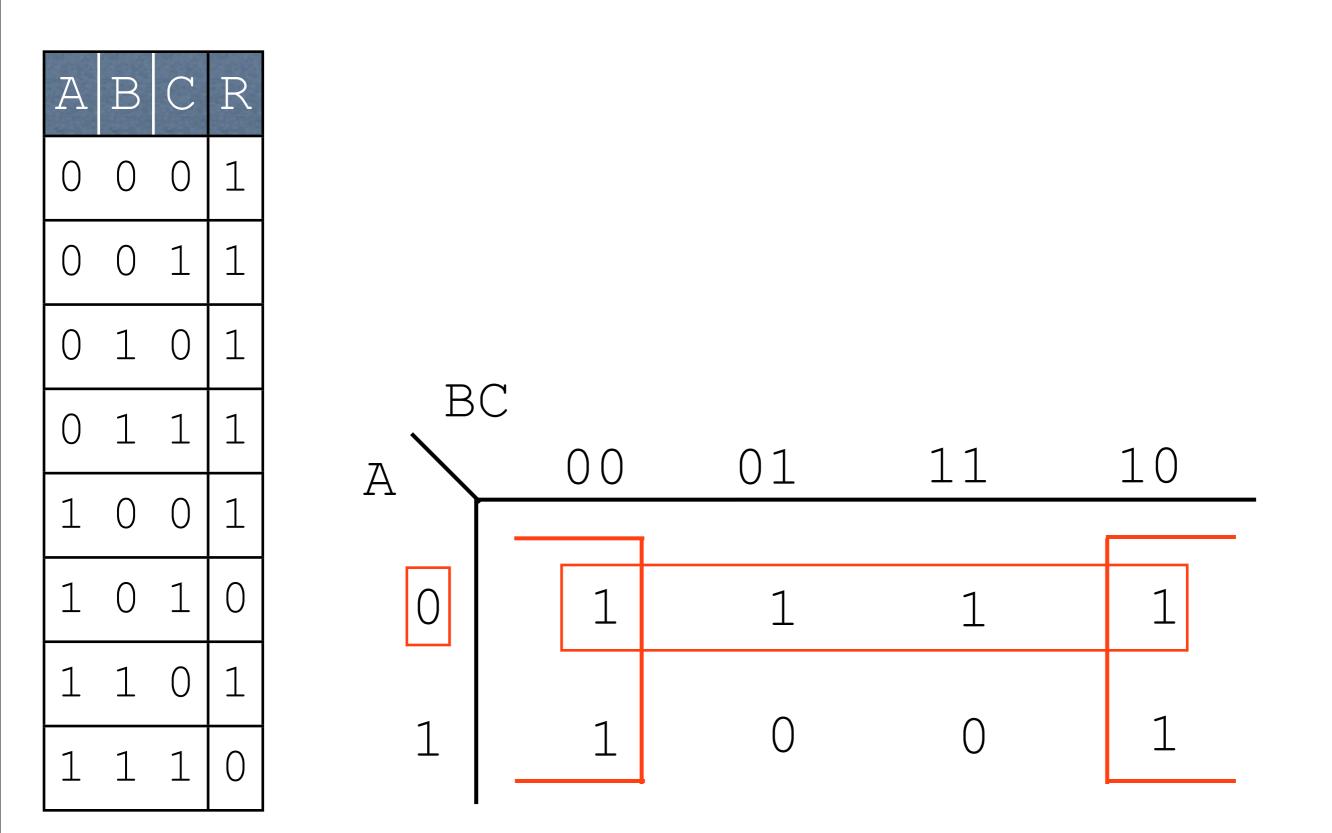
More Karnaugh Maps

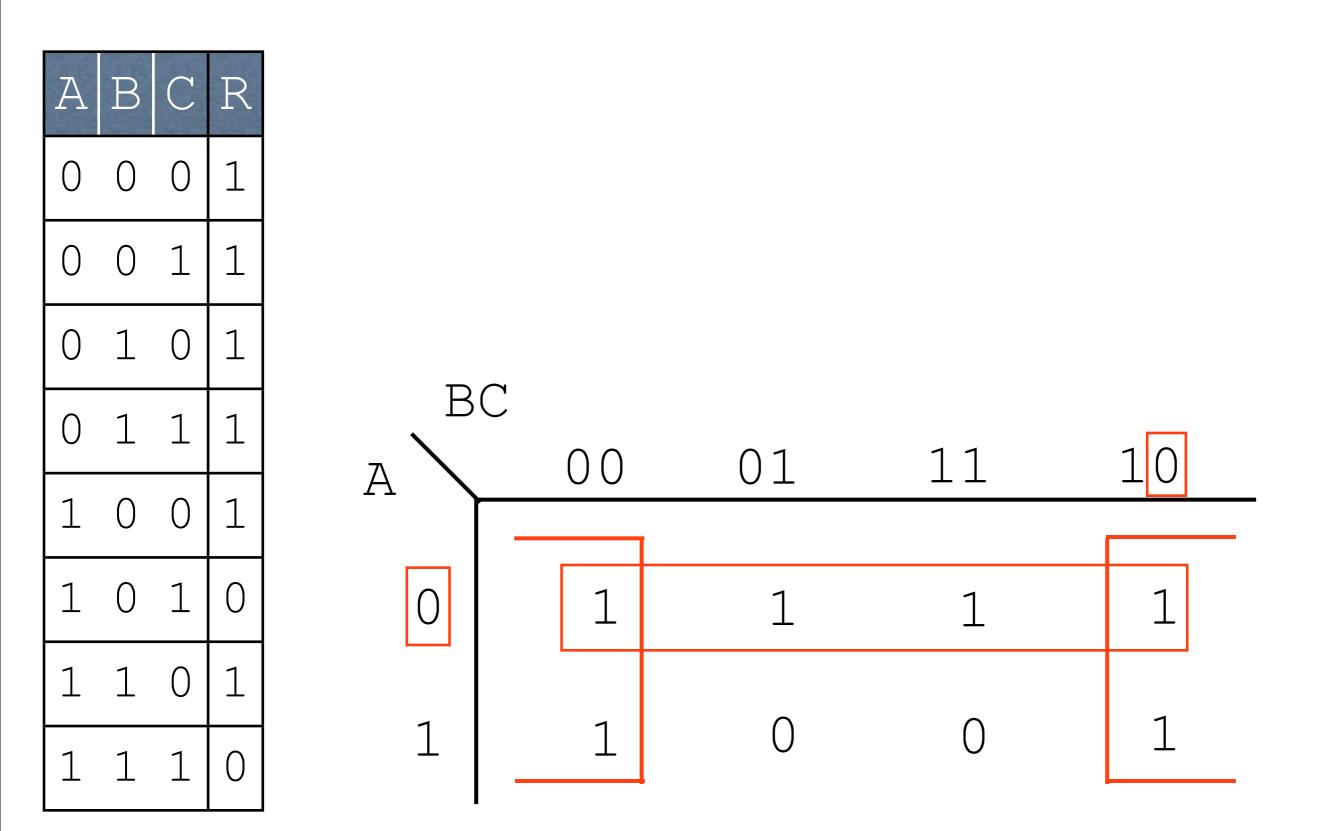
Another Three Variable Example

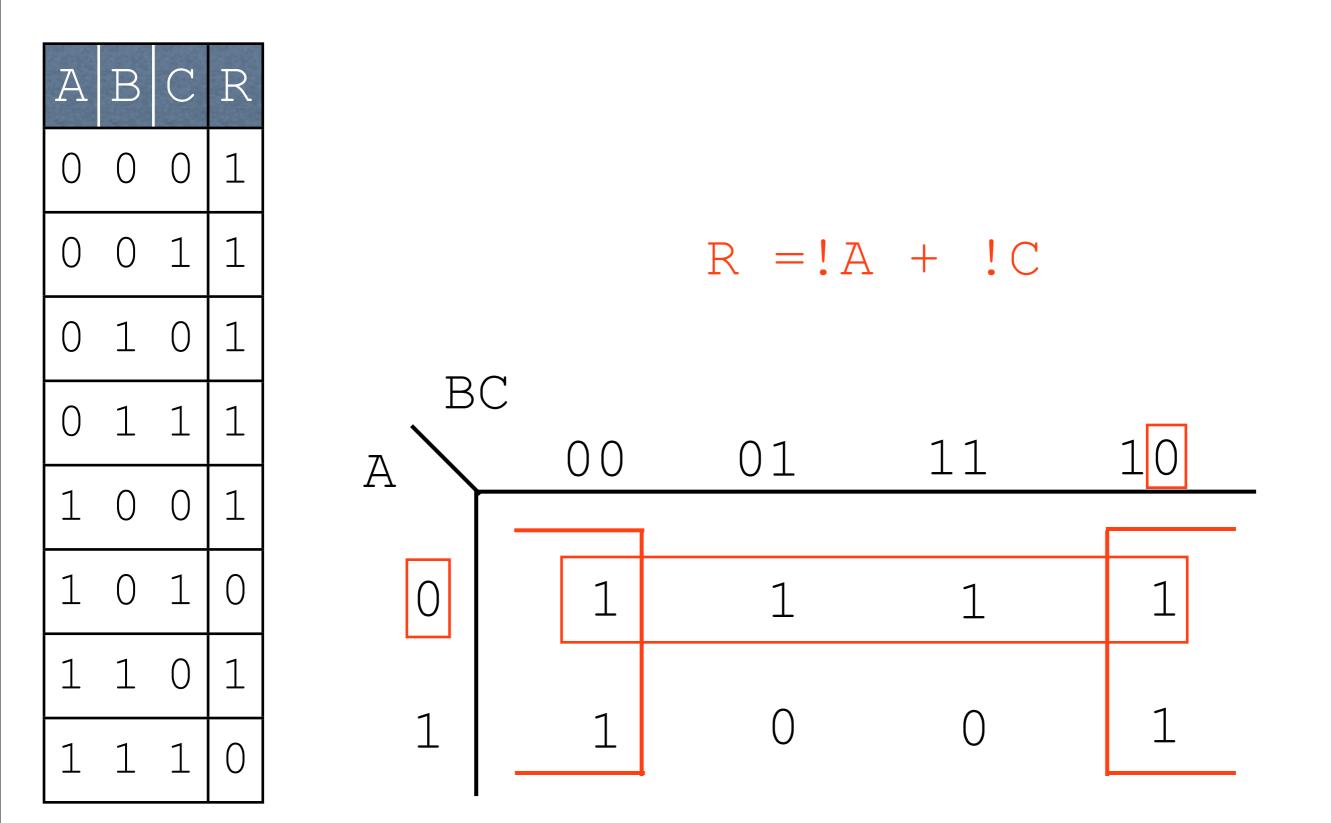




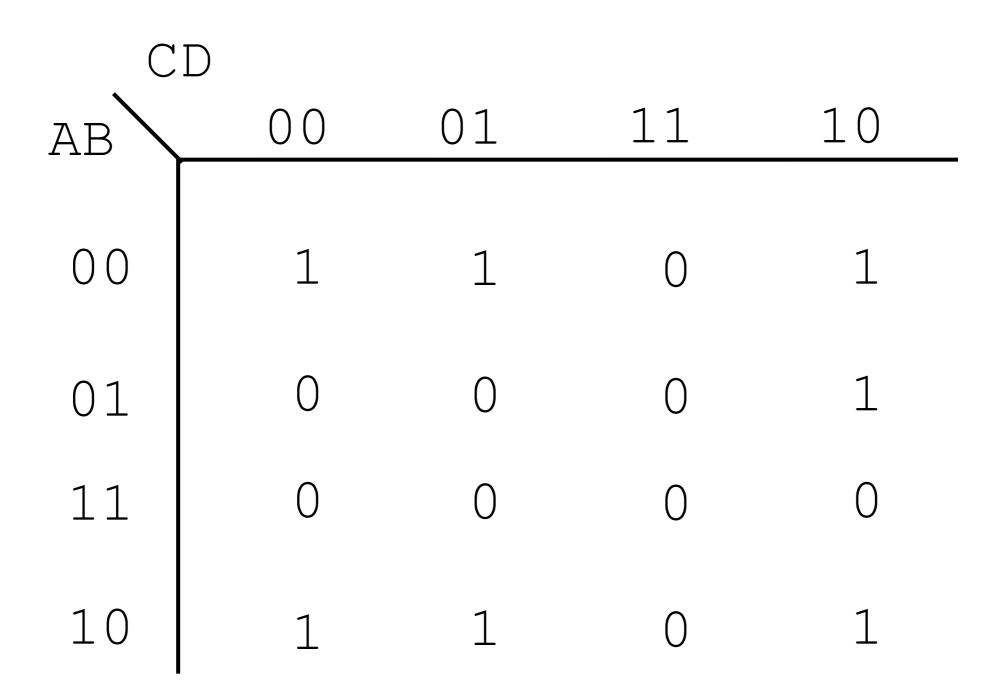


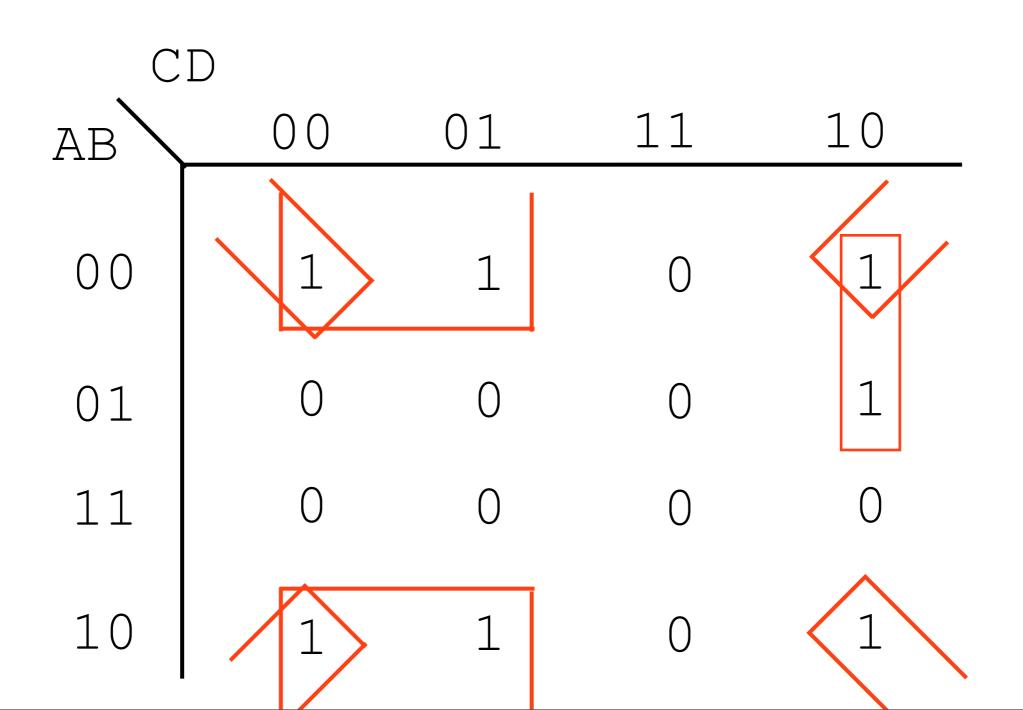




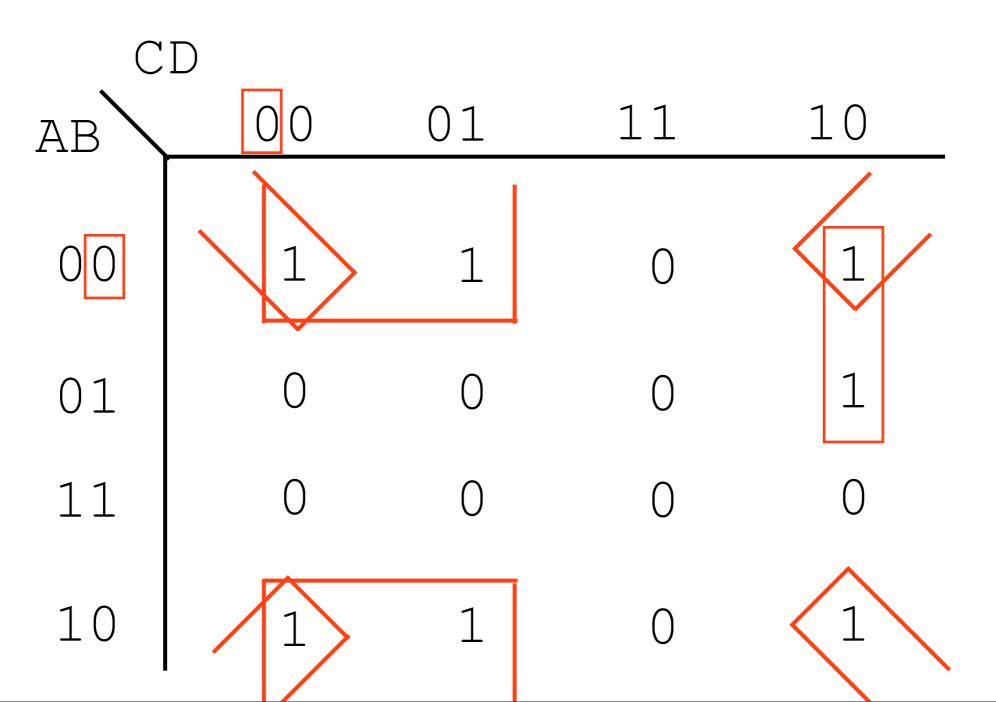


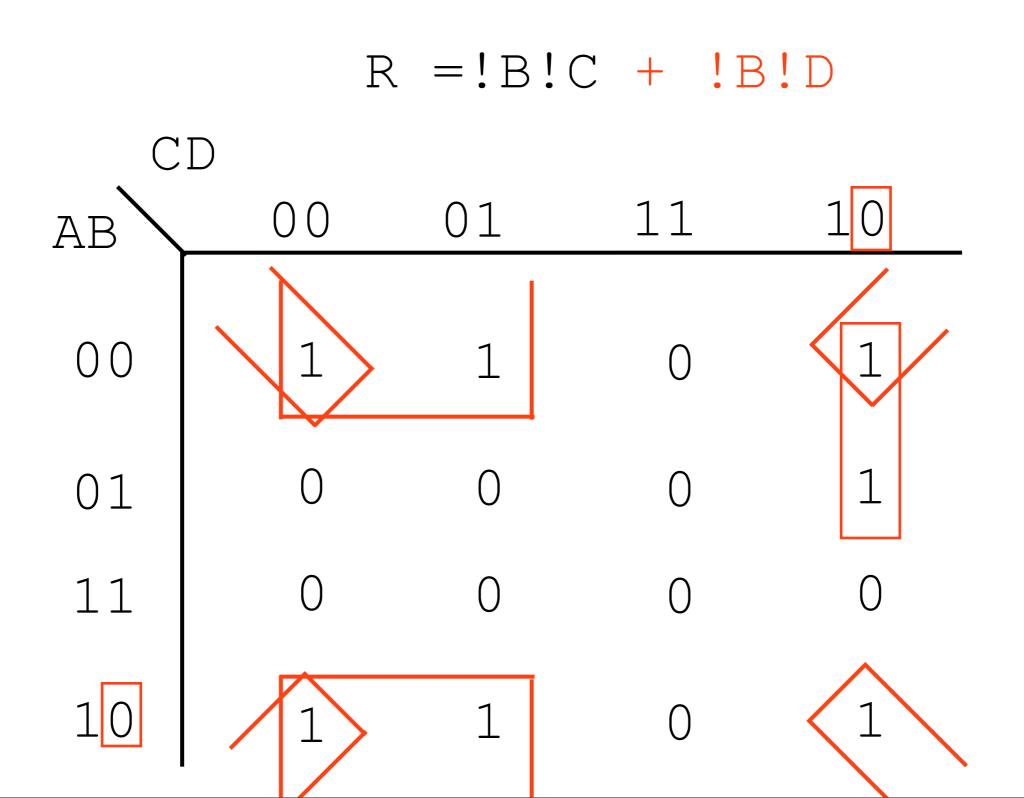
Four Variable Example

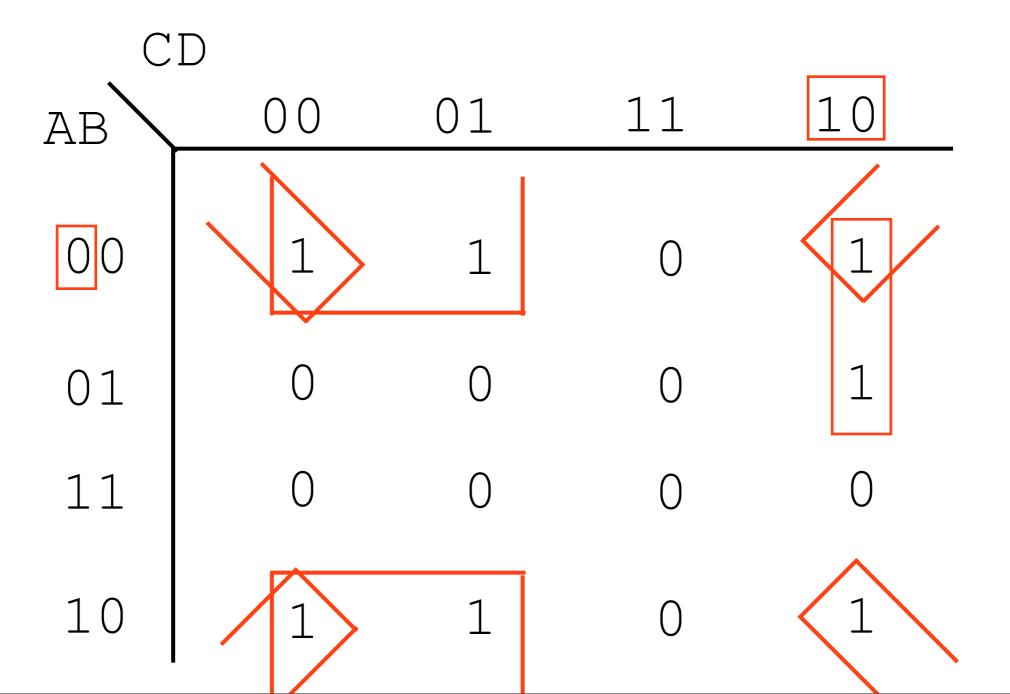




R = !B!C







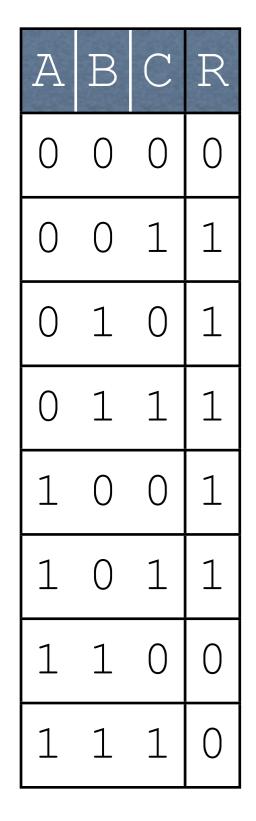
K-Map Rules in Summary (1)

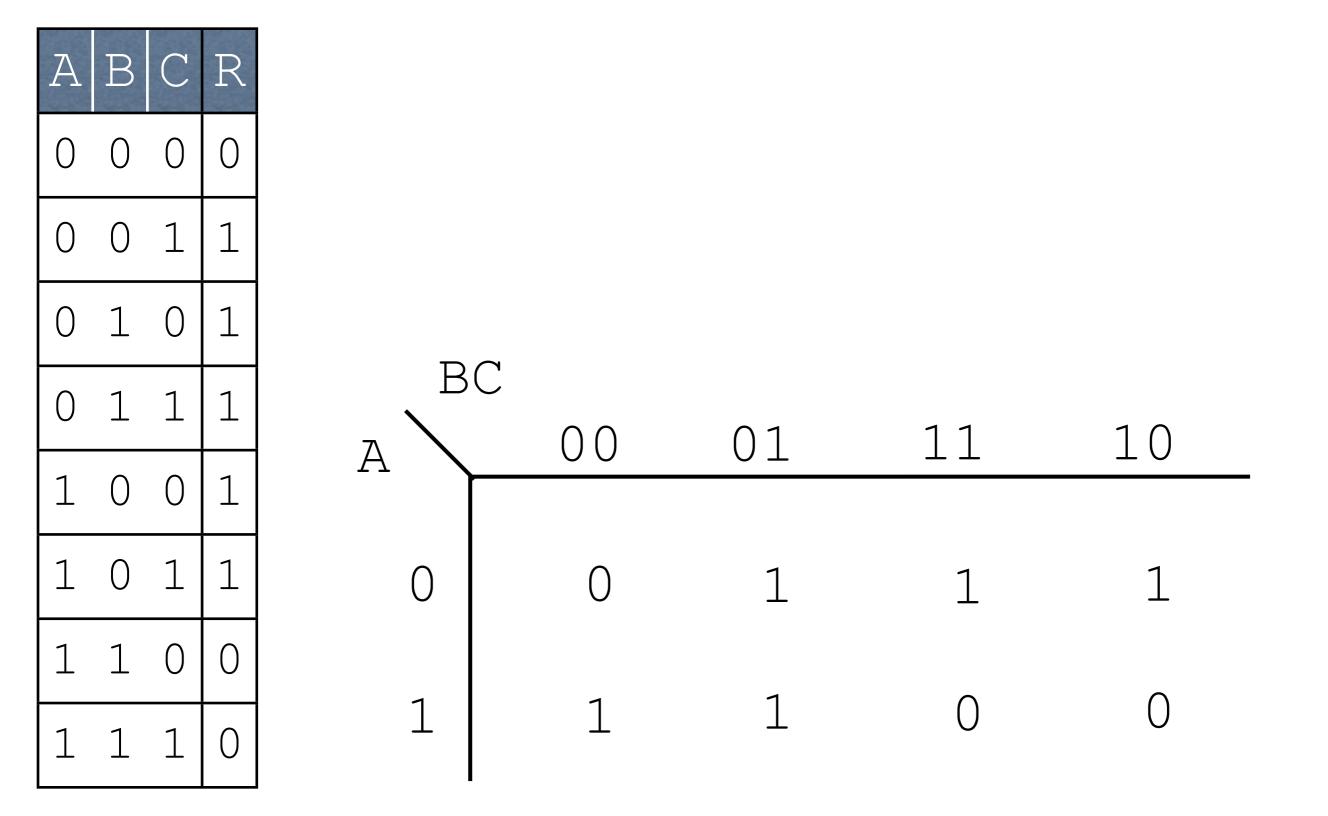
- Groups can contain only 1s
- Only 1s in adjacent groups are allowed (no diagonals)
- The number of 1s in a group must be a power of two (1, 2, 4, 8...)
- The groups must be as large as legally possible

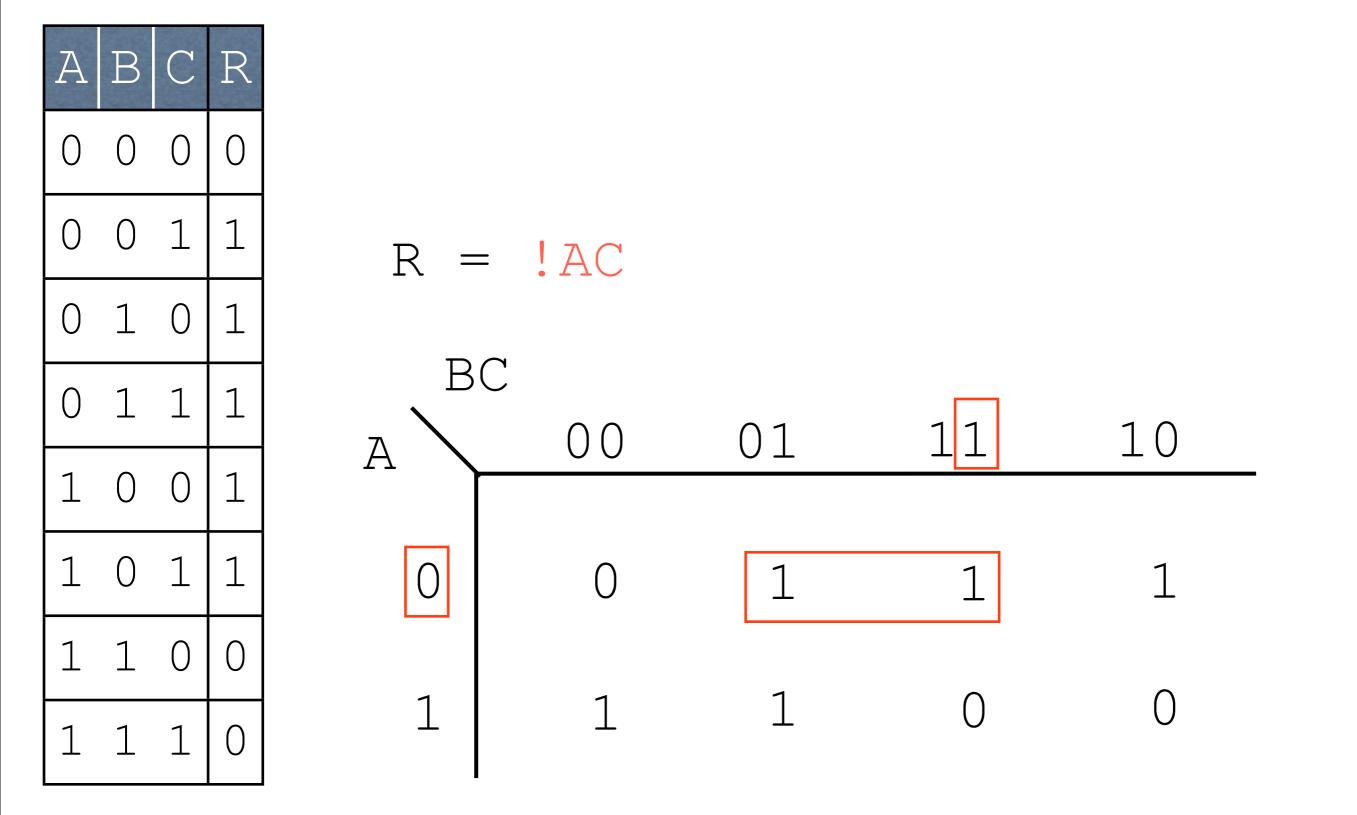
K-Map Rules in Summary (2)

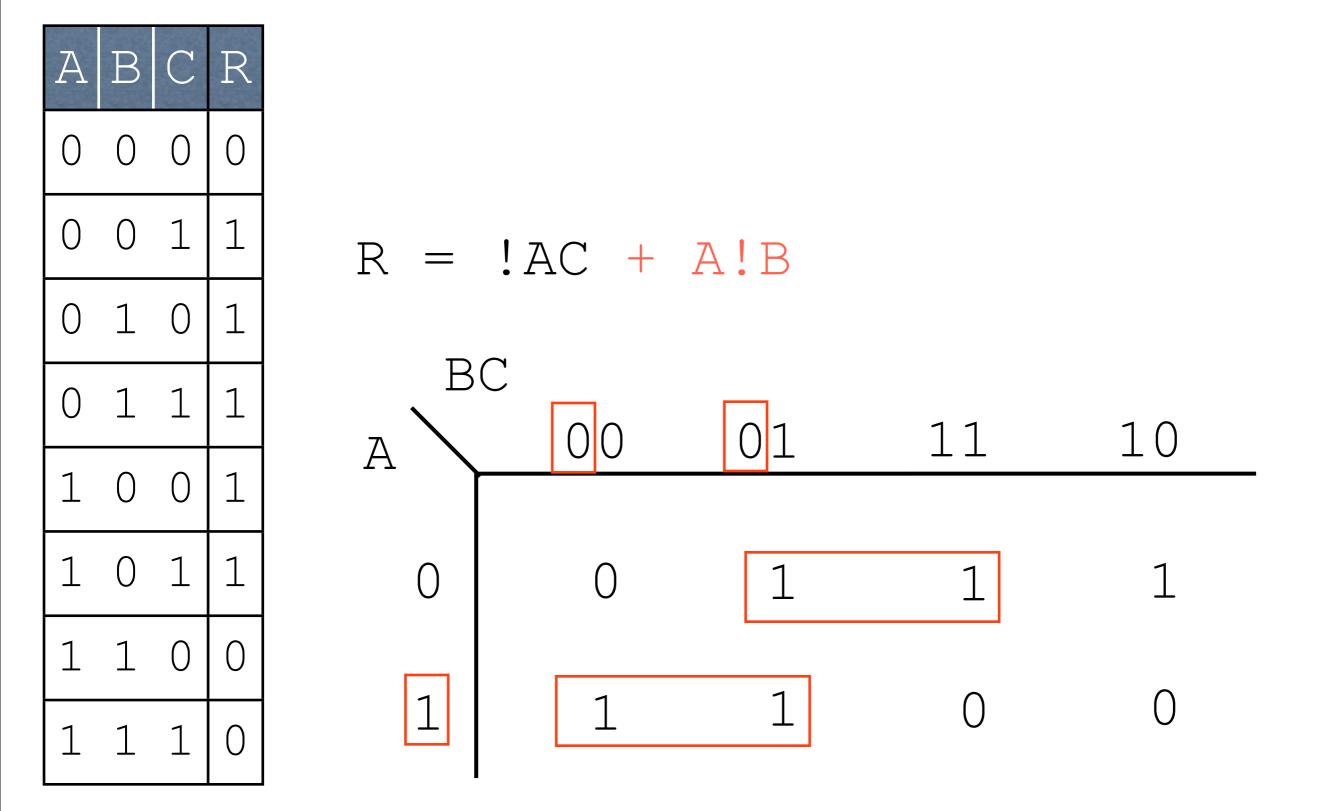
- All 1s must belong to a group, even if it's a group of one element
- Overlapping groups are permitted
- Wrapping around the map is permitted
- Use the fewest number of groups possible

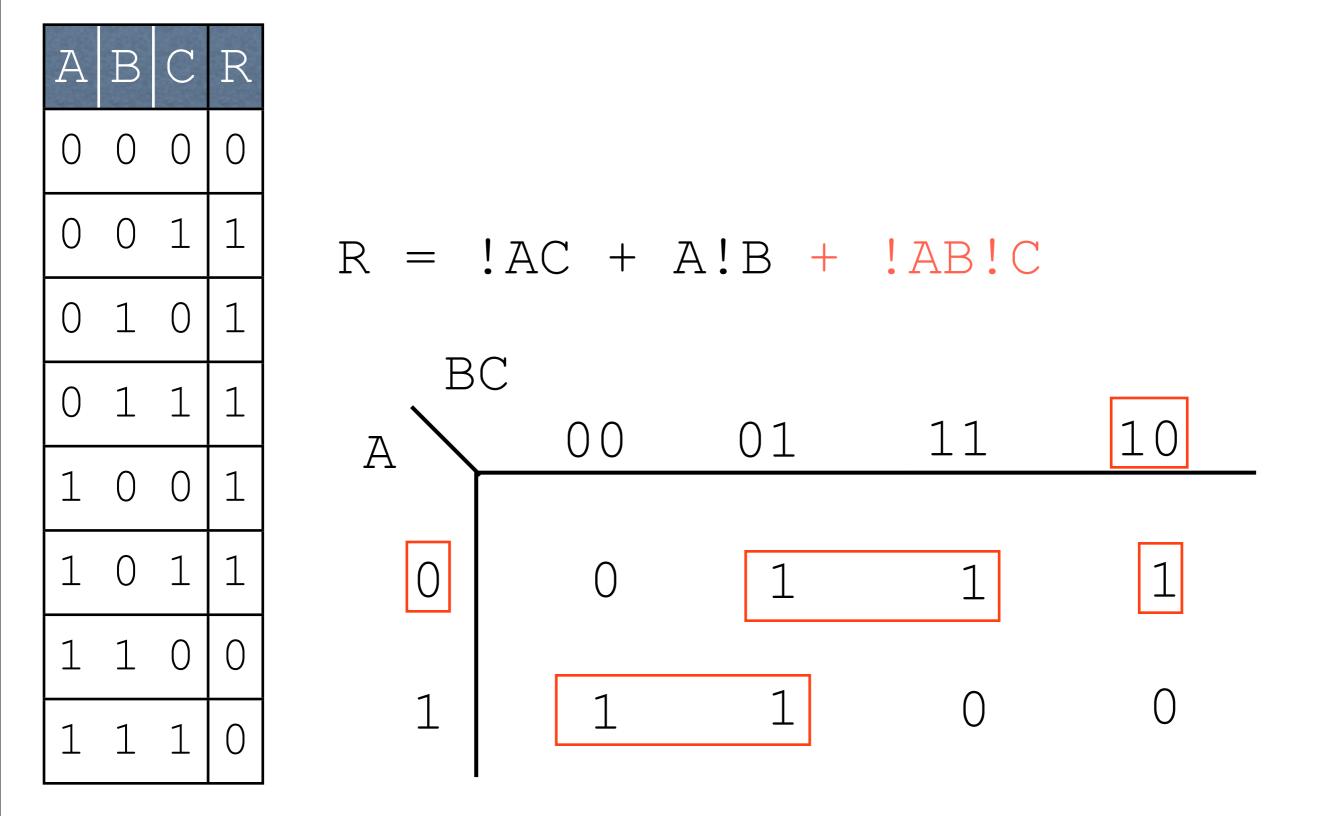
Revisiting Problem









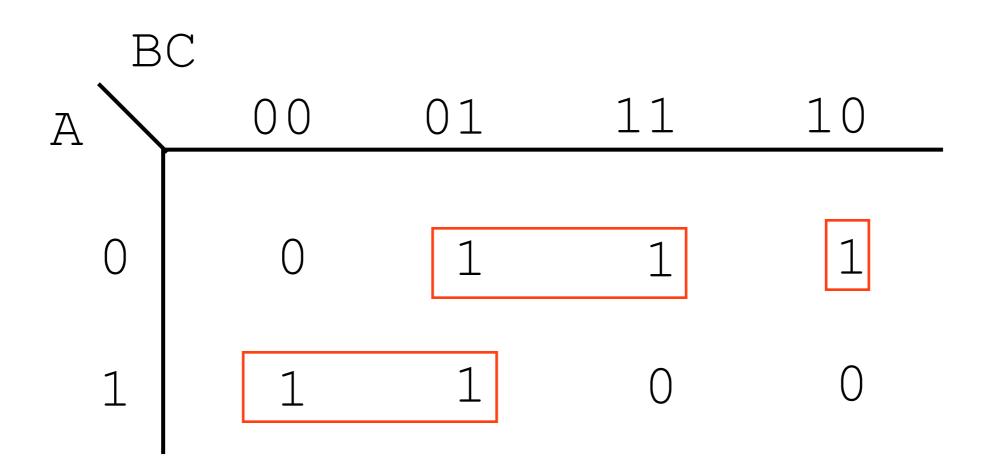


- Algebraic solution: !BC + A!B!C + !AB
- K-map solution: !AC + A!B + !AB!C
- Question: why might these differ?

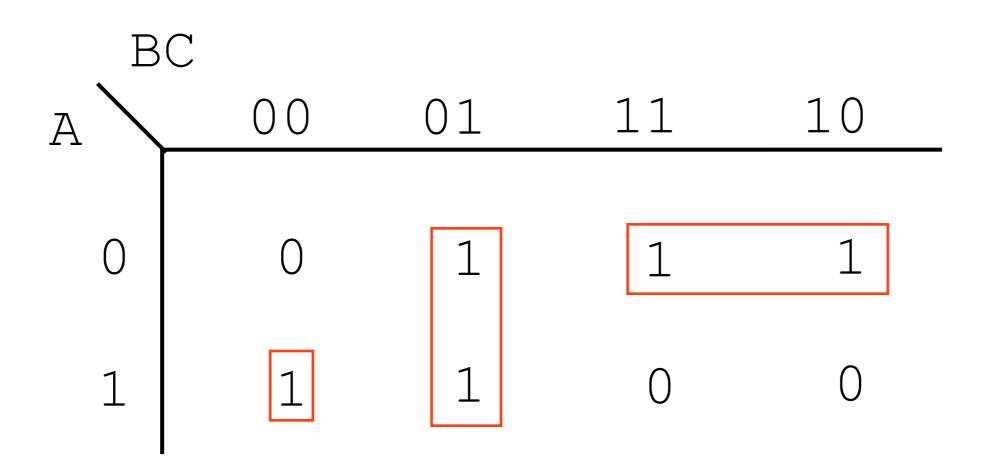
- Algebraic solution: !BC + A!B!C + !AB
- K-map solution: !AC + A!B + !AB!C
- Question: why might these differ?
 - Both are *minimal*, in that they have the fewest number of products possible
 - Can be multiple minimal solutions

- Algebraic solution: !BC + A!B!C + !AB
- K-map solution: !AC + A!B + !AB!C
- Question: why might these differ?
 - Both are *minimal*, in that they have the fewest number of products possible
 - Can be multiple minimal solutions

Algebraic solution: !BC + A!B!C + !AB K-map solution: !AC + A!B + !AB!C



Algebraic solution: !BC + A!B!C + !AB K-map solution: !BC + A!B!C + !AB



Exploiting Don't Cares in K-Maps

Don't Cares

- Occasionally, a circuit's output will be unspecified on a given input
 - Occurs when an input's value is invalid
- In these situations, we say the output is a *don't care*, marked as an X in a truth table

Example: Binary Coded Decimal

- Occasionally, it is convenient to represent decimal numbers directly in binary, using 4bits per decimal digit
 - For example, a digital display

Example: Binary Coded Decimal

Not all binary values map to decimal digits

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binary	Decimal
1000	8
1001	9
1010	Х
1011	Х
1100	Х
1101	Х
1110	Х
1111	Х

Significance

- Recall that in a K-map, we can only group 1s
- Because the value of a *don't care* is irrelevant, we can treat it as a 1 if it is convenient to do so (or a 0 if that would be more convenient)

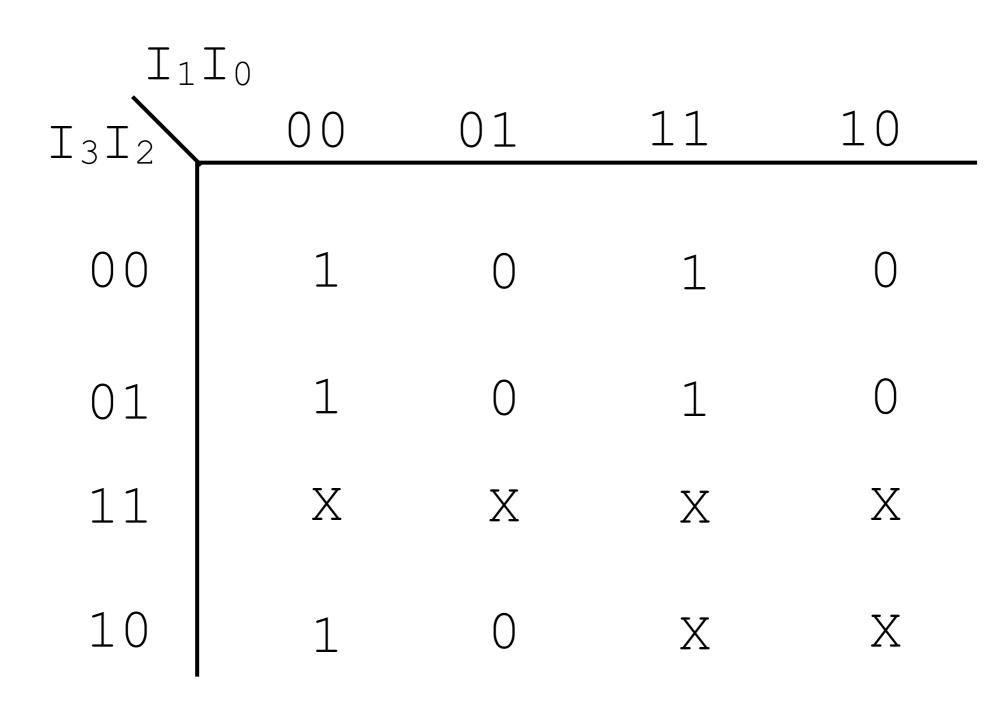
 A circuit that calculates if the binary coded decimal input % 2 == 0

 A circuit that calculates if the binary coded decimal input % 2 == 0

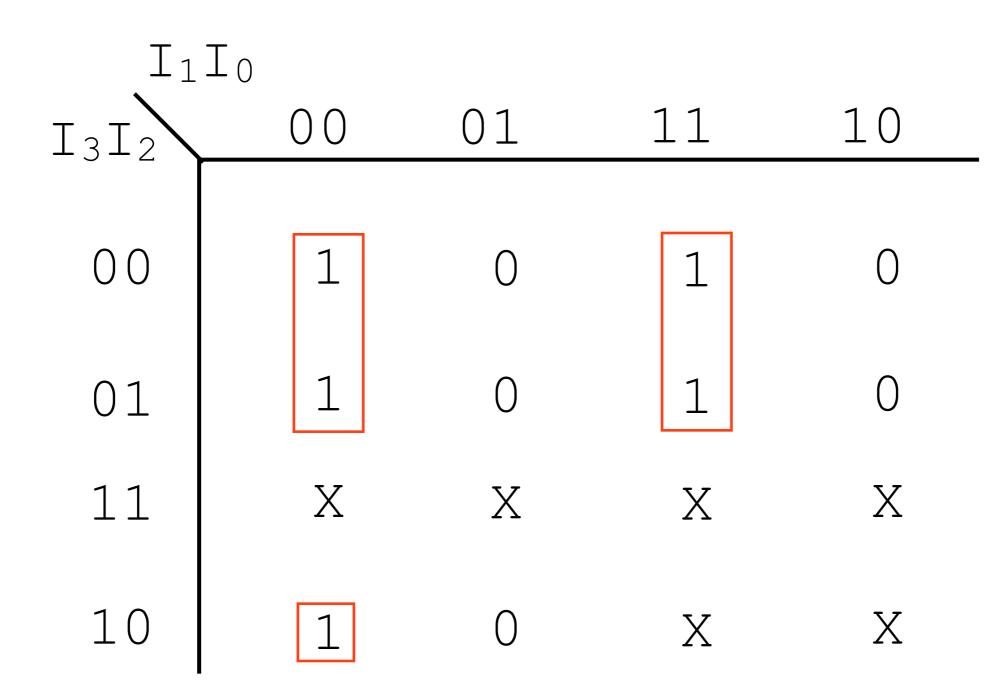
I ₃	I ₂	I ₁	Ιo	R
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0

I ₃	I ₂	I ₁	Ιo	R
1	0	0	0	1
1	0	0	1	0
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	Х
1	1	1	1	Х

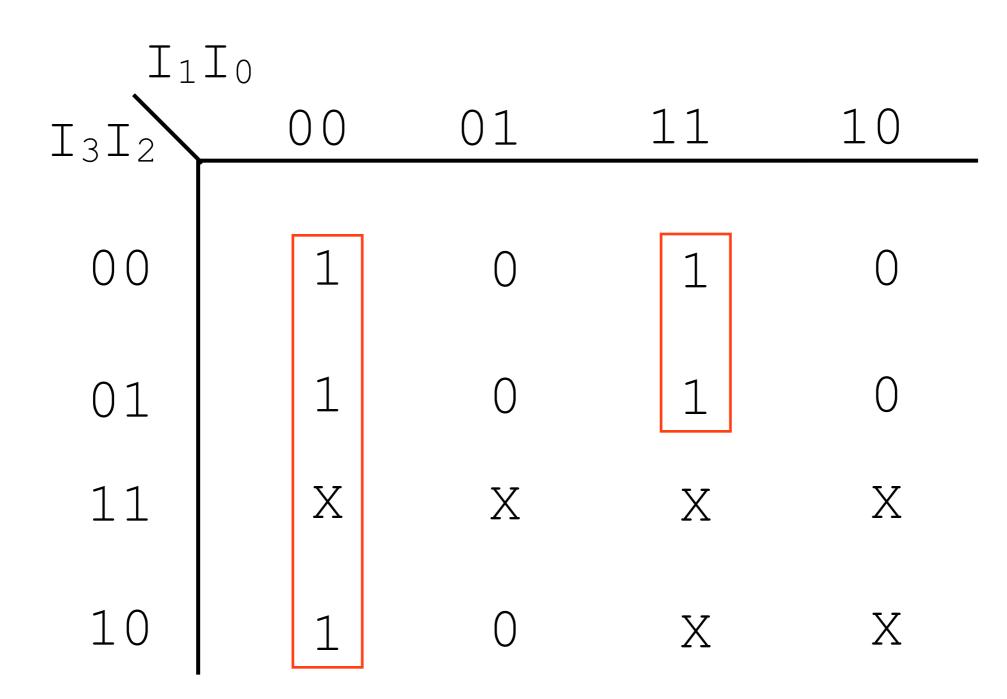
As a K-map

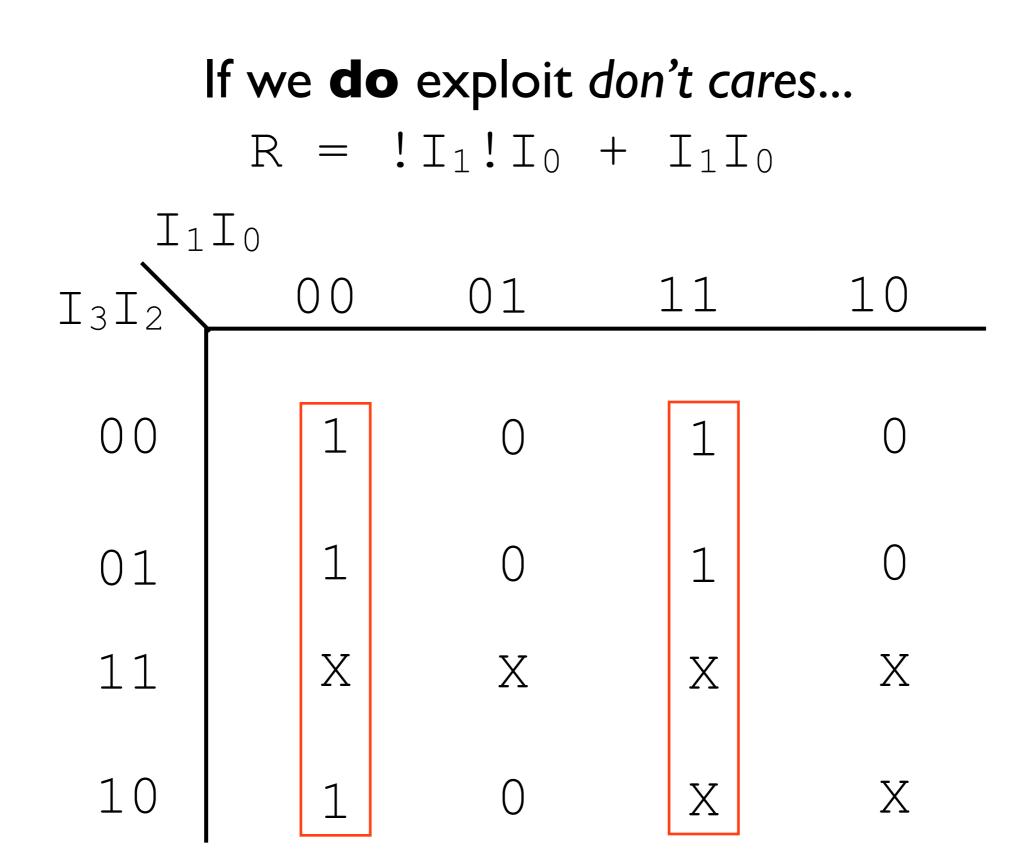


If we don't exploit don't cares...



If we **do** exploit *don't cares*...





Multiplexers

Motivation

- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?

Motivation

- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?
 - We don't always do the same thing it depends on the instruction
 - What do we need here?

Motivation

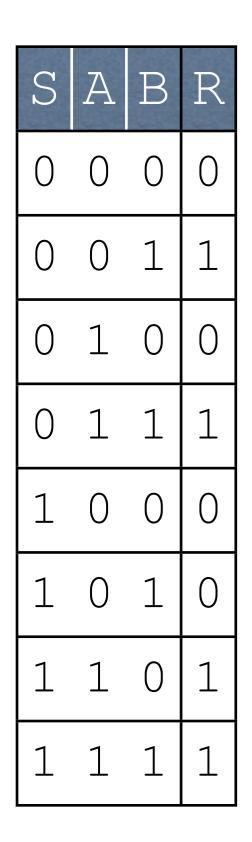
- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?
 - We don't always do the same thing it depends on the instruction
 - What do we need here?
 - Some form of a conditional

Conditional

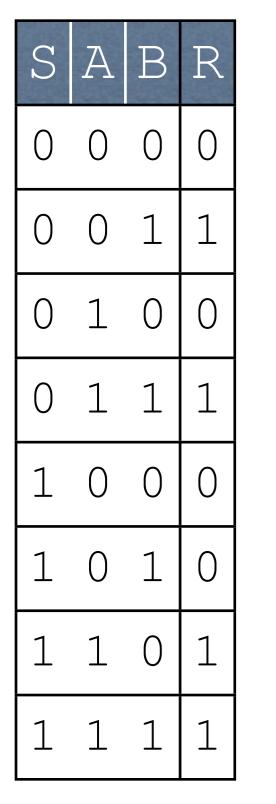
- Assume selector, A, B, and R all hold a single bit
- How can we implement this using what we have seen so far? (Hint: what does the truth table look like?)

R = (selector) ? A : B

R = (selector) ? A : B

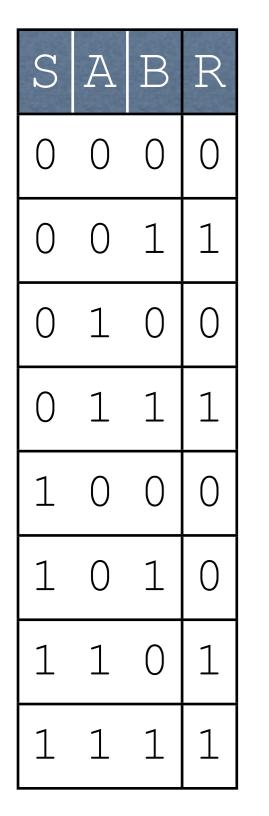


R = (selector) ? A : B



Unreduced sum-of-products: R = !S!AB + !SAB + SA!B + SAB

R = (selector) ? A : B



Unreduced sum-of-products: R = !S!AB + !SAB + SA!B + SAB

Reduced sum-of-products: R = !SB + SA

Original

R = (selector) ? A : B

Modified

R = (selector) ? doThis() : doThat()

Original

R = (selector) ? A : B

Modified

R = (selector) ? doThis() : doThat()

Intended semantics: either doThis() or doThat() is
executed. Our formula from before doesn't satisfy this
property:

R = !S*doThat() + S*doThis()

Original

R = (selector) ? A : B

Modified

- R = (selector) ? doThis() : doThat()
 - Fixing this is hard, but possible
 - Involves circuitry we'll learn later
 - Oddly enough, this isn't as big of a problem as it seems, and it's ironically *faster* than doing just one or the other. Why?

Original

R = (selector) ? A : B

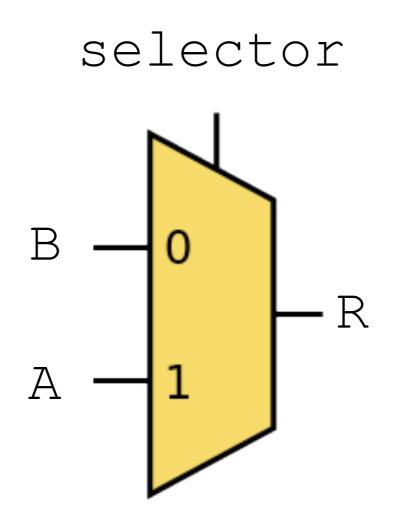
Modified

- R = (selector) ? doThis() : doThat()
 - Oddly enough, this isn't as big of a problem as it seems, and it's ironically *faster* than doing just one or the other. Why? branches executed in parallel at the hardware level. Faster because extra circuitry is extra.

Multiplexer

• Component that does exactly this:

$$R = (selector) ? A : B$$



Question

- Recall the arithmetic logic unit (ALU), which is used to add, subtract, shift, perform bitwise operations, etc.
- How might a multiplexer be useful for an ALU?

Add UnsignedadduRR[rd] = R[rs] + R[rt] $0/21_{hex}$ AndandRR[rd] = R[rs] & R[rt] $0/24_{hex}$

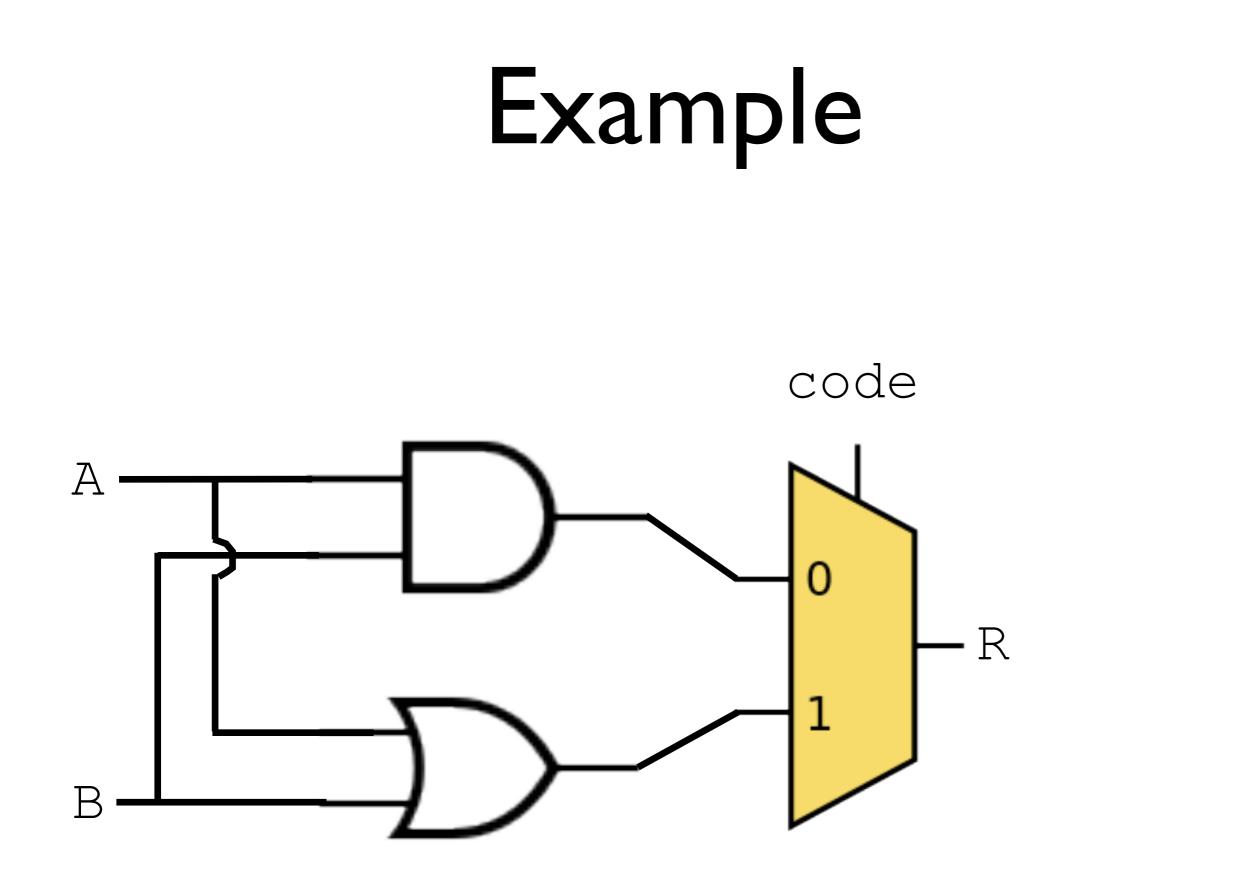
Question

- Recall the arithmetic logic unit (ALU), which is used to add, subtract, shift, perform bitwise operations, etc.
- How might a multiplexer be useful for an ALU? - Do all operations at once in parallel, and then use a multiplexer to select the one you want

Opcode / Function

Add UnsignedadduRR[rd] = R[rs] + R[rt] $0 / 21_{hex}$ AndandRR[rd] = R[rs] & R[rt] $0 / 24_{hex}$

- Let's design a one-bit ALU that can do bitwise AND and bitwise OR
- It has three inputs: A, B, and S, along with one output ${\rm R}$
- S is a code provided indicating which operation to perform; 0 for AND and 1 for OR

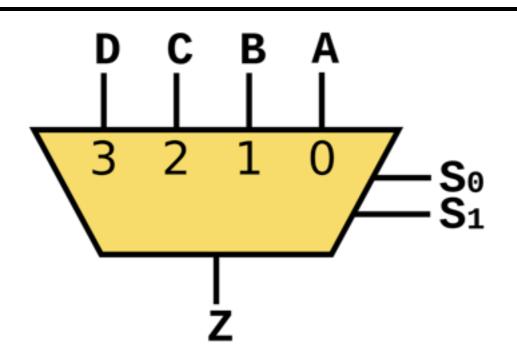


Bigger Multiplexers

- Can have a multiplexer with more than two inputs
- Need multiple select lines in this case
- Question: how many select lines do we need for a 4 input multiplexer?

Bigger Multiplexers

- Can have a multiplexer with more than two inputs
- Need multiple select lines in this case
- Question: how many select lines do we need for a 4 input multiplexer? - 2. Values of different lines essentially encode different binary integers.



Bigger Multiplexers

 We can build up bigger multiplexers from 2-input multiplexers. How?