
CS64 Week 6 Lecture 2
Kyle Dewey

Overview

• More Karnaugh maps

• Exploiting don’t cares in Karnaugh maps

• Multiplexers

More Karnaugh Maps

Another Three Variable
Example

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A
BC

0

1

00 01

1

11 10

1

1

0

1

0

1

1

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

R =!A + !C

Four Variable Example

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C + !B!D

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C + !B!D + !AC!D

K-Map Rules in
Summary (1)

• Groups can contain only 1s

• Only 1s in adjacent groups are allowed (no
diagonals)

• The number of 1s in a group must be a
power of two (1, 2, 4, 8...)

• The groups must be as large as legally
possible

• All 1s must belong to a group, even if it’s a
group of one element

• Overlapping groups are permitted

• Wrapping around the map is permitted

• Use the fewest number of groups possible

K-Map Rules in
Summary (2)

Revisiting Problem
!A!BC + A!B!C + !ABC + !AB!C + A!BC

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

R = !AC

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

R = !AC + A!B

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

R = !AC + A!B + !AB!C

Difference

• Algebraic solution: !BC + A!B!C + !AB

• K-map solution: !AC + A!B + !AB!C

• Question: why might these differ?

Difference

• Algebraic solution: !BC + A!B!C + !AB

• K-map solution: !AC + A!B + !AB!C

• Question: why might these differ?

• Both are minimal, in that they have the
fewest number of products possible

• Can be multiple minimal solutions

Difference

• Algebraic solution: !BC + A!B!C + !AB

• K-map solution: !AC + A!B + !AB!C

• Question: why might these differ?

• Both are minimal, in that they have the
fewest number of products possible

• Can be multiple minimal solutions

Difference

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

K-map solution: !AC + A!B + !AB!C
Algebraic solution: !BC + A!B!C + !AB

Difference

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

K-map solution: !BC + A!B!C + !AB
Algebraic solution: !BC + A!B!C + !AB

Exploiting Don’t Cares in
K-Maps

Don’t Cares

• Occasionally, a circuit’s output will be
unspecified on a given input

• Occurs when an input’s value is invalid

• In these situations, we say the output is a
don’t care, marked as an X in a truth table

Example: Binary Coded
Decimal

• Occasionally, it is convenient to represent
decimal numbers directly in binary, using 4-
bits per decimal digit

• For example, a digital display

Example: Binary Coded
Decimal

• Not all binary values map to decimal digits

Binary Decimal
0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

Binary Decimal
1000 8

1001 9

1010 X

1011 X

1100 X

1101 X

1110 X

1111 X

Significance

• Recall that in a K-map, we can only group 1s

• Because the value of a don’t care is irrelevant,
we can treat it as a 1 if it is convenient to do
so (or a 0 if that would be more convenient)

Example
• A circuit that calculates if the binary coded

decimal input % 2 == 0

Example
• A circuit that calculates if the binary coded

decimal input % 2 == 0

I3 I2 I1 I0 R
0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

I3 I2 I1 I0 R
1 0 0 0 1

1 0 0 1 0

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

Example

I3I2

I1I0
00 01 11 10

1

1

0

0

1

1

0

0

00

01

11

10

X

1

X

0

X

X

X

X

As a K-map

Example

I3I2

I1I0
00 01 11 10

1

1

0

0

1

1

0

0

00

01

11

10

X

1

X

0

X

X

X

X

If we don’t exploit don’t cares...

Example

I3I2

I1I0
00 01 11 10

1

1

0

0

1

1

0

0

00

01

11

10

X

1

X

0

X

X

X

X

If we do exploit don’t cares...

Example

I3I2

I1I0
00 01 11 10

1

1

0

0

1

1

0

0

00

01

11

10

X

1

X

0

X

X

X

X

If we do exploit don’t cares...
R = !I1!I0 + I1I0

Multiplexers

Motivation

• At this point, you’ve seen a lot of
straightline circuits

• However, this doesn’t quite match up with
respect to what a processor does. Why?

Motivation

• At this point, you’ve seen a lot of
straightline circuits

• However, this doesn’t quite match up with
respect to what a processor does. Why?

• We don’t always do the same thing - it
depends on the instruction

• What do we need here?

Motivation

• At this point, you’ve seen a lot of
straightline circuits

• However, this doesn’t quite match up with
respect to what a processor does. Why?

• We don’t always do the same thing - it
depends on the instruction

• What do we need here?

• Some form of a conditional

Conditional

R = (selector) ? A : B

• Assume selector, A, B, and R all hold a
single bit

• How can we implement this using what we
have seen so far? (Hint: what does the
truth table look like?)

R = (selector) ? A : B

S A B R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

R = (selector) ? A : B

S A B R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

R = !S!AB + !SAB + SA!B + SAB
Unreduced sum-of-products:

R = (selector) ? A : B

S A B R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

R = !S!AB + !SAB + SA!B + SAB
Unreduced sum-of-products:

R = !SB + SA
Reduced sum-of-products:

Slight Modification

R = (selector) ? A : B

Original

R = (selector) ? doThis() : doThat()

Modified

Slight Modification

R = (selector) ? A : B

Original

R = (selector) ? doThis() : doThat()

Modified

Intended semantics: either doThis() or doThat() is
executed. Our formula from before doesn’t satisfy this

property:

R = !S*doThat() + S*doThis()

Slight Modification

R = (selector) ? A : B

Original

R = (selector) ? doThis() : doThat()
Modified

• Fixing this is hard, but possible

• Involves circuitry we’ll learn later

• Oddly enough, this isn’t as big of a problem
as it seems, and it’s ironically faster than
doing just one or the other. Why?

Slight Modification

R = (selector) ? A : B

Original

R = (selector) ? doThis() : doThat()
Modified

• Oddly enough, this isn’t as big of a problem
as it seems, and it’s ironically faster than
doing just one or the other. Why? -
branches executed in parallel at the
hardware level. Faster because extra
circuitry is extra.

Multiplexer
• Component that does exactly this:

R = (selector) ? A : B

selector

A

B
R

Question

• Recall the arithmetic logic unit (ALU),
which is used to add, subtract, shift,
perform bitwise operations, etc.

• How might a multiplexer be useful for an
ALU?

Opcode / Function

Question
• Recall the arithmetic logic unit (ALU),

which is used to add, subtract, shift,
perform bitwise operations, etc.

• How might a multiplexer be useful for an
ALU? - Do all operations at once in
parallel, and then use a multiplexer to
select the one you want

Opcode / Function

Example

• Let’s design a one-bit ALU that can do
bitwise AND and bitwise OR

• It has three inputs: A, B, and S, along with
one output R

• S is a code provided indicating which
operation to perform; 0 for AND and 1 for
OR

Example

code

A

B

R

Bigger Multiplexers

• Can have a multiplexer with more than two
inputs

• Need multiple select lines in this case

• Question: how many select lines do we
need for a 4 input multiplexer?

Bigger Multiplexers
• Can have a multiplexer with more than two

inputs

• Need multiple select lines in this case

• Question: how many select lines do we
need for a 4 input multiplexer? - 2. Values
of different lines essentially encode
different binary integers.

Bigger Multiplexers

• We can build up bigger multiplexers from
2-input multiplexers. How?

